Abstract

In this paper, we present and prove a new Wilker-type inequality for hyperbolic functions. We also give a simple proof of the counterpart of the above inequality for the circular functions.

1. Introduction

Wilker [1] proposed two open questions as the following statements.

Problem 1. If 0<π‘₯<πœ‹/2, then ξ‚€sinπ‘₯π‘₯2+tanπ‘₯π‘₯>2.(1.1)

Problem 2. There exists a largest constant 𝑐 such that ξ‚€sinπ‘₯π‘₯2+tanπ‘₯π‘₯>2+𝑐π‘₯3tanπ‘₯(1.2) for 0<π‘₯<πœ‹/2.

Sumner et al. [2] affirmed the truth of the problems above and obtained a further result as follows.

Theorem 1.1. If 0<π‘₯<πœ‹/2, then 16πœ‹4π‘₯3ξ‚€tanπ‘₯<sinπ‘₯π‘₯2+tanπ‘₯π‘₯8βˆ’2<π‘₯453tanπ‘₯.(1.3) Furthermore, 16/πœ‹4 and 8/45 are the best constants in (1.3).

Guo et al. [3] gave new proofs of inequalities (1.1) and (1.2). In recent years, Zhu [4] showed a new simple proof of inequality (1.1); Pinelis [5] got other proof of inequalities (1.3) by using L'Hospital rules for monotonicity; Zhang and Zhu [6] gave a new elementary proof of double inequalities (1.3).

Besides, in article [7], Wang offered another type of the inequality and proved it by the power series expansions of circular functions as follows

Theorem 1.2. Let 0<π‘₯<πœ‹/2. Then, 2π‘₯453ξ‚€π‘₯sinπ‘₯<sinπ‘₯2+π‘₯ξ‚€2tanπ‘₯βˆ’2<πœ‹βˆ’16πœ‹3π‘₯3sinπ‘₯.(1.4) Furthermore, 2/45 and (2/πœ‹βˆ’16/πœ‹3) are the best constants in (1.4).

Zhu [8] established a new Wilker-type inequality involving hyperbolic functions as follows: ξ‚€sinhπ‘₯π‘₯2+tanhπ‘₯π‘₯8βˆ’2>π‘₯453tanhπ‘₯,π‘₯>0,(1.5) where the constant 8/45 is the optimum constant in (1.5).

In fact, we can show a new Wilker-type inequality involving hyperbolic functions referring to the result above.

Theorem 1.3. Let π‘₯>0. Then ξ‚€π‘₯sinhπ‘₯2+π‘₯2tanhπ‘₯βˆ’2<π‘₯453sinhπ‘₯.(1.6) Furthermore, 2/45 is the best constant in (1.6).

The purpose of this paper is to present a concise proof of inequality (1.6) by using the power series expansion of hyperbolic functions and to give an elementary proof of inequality (1.4) in another way.

2. The Proof of Theorem 1.3

Let ((π‘₯/sinhπ‘₯)2+π‘₯/tanhπ‘₯βˆ’2)/(π‘₯3sinhπ‘₯)=(π‘₯2+π‘₯sinhπ‘₯coshπ‘₯βˆ’2(sinhπ‘₯)2)/(π‘₯sinhπ‘₯)3=𝐴(π‘₯)/𝐡(π‘₯), where 𝐴(π‘₯)=π‘₯2+π‘₯sinhπ‘₯coshπ‘₯βˆ’2(sinhπ‘₯)2,  and 𝐡(π‘₯)=(π‘₯sinhπ‘₯)3. We get that the existence of Theorem 1.3 can be ensured when proving the following two statements: the first is 𝐴(π‘₯)/𝐡(π‘₯)≀2/45 or 2𝐡(π‘₯)β‰₯45𝐴(π‘₯), and the second is limπ‘₯β†’0+(𝐴(π‘₯)/𝐡(π‘₯))=2/45.

Since𝐴(π‘₯)=π‘₯2+12π‘₯sinhπ‘₯βˆ’(cosh2π‘₯βˆ’1)=π‘₯2+12π‘₯βˆžξ“π‘›=0(2π‘₯)2𝑛+1βˆ’(2𝑛+1)!βˆžξ“π‘›=0(2π‘₯)2𝑛(2𝑛)!+1=π‘₯2+12βˆžξ“π‘›=022𝑛+1π‘₯(2𝑛+1)!2𝑛+2βˆ’βˆžξ“π‘›=0(2π‘₯)2𝑛=(2𝑛)!+1βˆžξ“π‘›=122𝑛π‘₯(2𝑛+1)!2𝑛+2βˆ’βˆžξ“π‘›=122𝑛+2π‘₯(2𝑛+2)!2𝑛+2=βˆžξ“π‘›=1ξ‚΅22π‘›βˆ’2(2𝑛+1)!2𝑛+2ξ‚Άπ‘₯(2𝑛+2)!2𝑛+2=βˆžξ“π‘›=2ξ‚΅22π‘›βˆ’2(2𝑛+1)!2𝑛+2ξ‚Άπ‘₯(2𝑛+2)!2𝑛+2=βˆžξ“π‘›=2π‘Žπ‘›π‘₯2𝑛+2,1𝐡(π‘₯)=4π‘₯31(sinh3π‘₯βˆ’3sinhπ‘₯)=4π‘₯3βˆžξ“π‘›=032𝑛+1βˆ’3π‘₯(2𝑛+1)!2𝑛+1=14βˆžξ“π‘›=032𝑛+1βˆ’3π‘₯(2𝑛+1)!2𝑛+4=14βˆžξ“π‘›=132𝑛+1βˆ’3π‘₯(2𝑛+1)!2𝑛+4=βˆžξ“π‘›=232π‘›βˆ’1βˆ’3π‘₯4(2π‘›βˆ’1)!2𝑛+2=βˆžξ“π‘›=2𝑏𝑛π‘₯2𝑛+2,(2.1) where π‘Žπ‘›=22𝑛/(2𝑛+1)!βˆ’22𝑛+2/(2𝑛+2)!, 𝑏𝑛=(32π‘›βˆ’1βˆ’3)/4(2π‘›βˆ’1)!, 𝑛β‰₯2, and π‘›βˆˆπ‘+, according to the analysis above, the proof of Theorem 1.3 can be completed when proving that 2𝑏𝑛β‰₯45π‘Žπ‘›,(2.2) that is, 𝑛(𝑛+1)(2𝑛+1)(9π‘›βˆ’9)β‰₯135(π‘›βˆ’1)4𝑛(2.3) for 𝑛β‰₯2.

Let 𝑓(π‘₯)=π‘₯(π‘₯+1)(2π‘₯+1)(9π‘₯βˆ’9)βˆ’135(π‘₯βˆ’1)4π‘₯ for π‘₯∈[2,+∞). We computeπ‘“ξ…žξ€·(π‘₯)=6π‘₯2ξ€Έ9+6π‘₯+1π‘₯ξ€·βˆ’96π‘₯2ξ€Έ+ξ€·+6π‘₯+12π‘₯3+3π‘₯2ξ€Έ9+π‘₯π‘₯log9βˆ’135β‹…4π‘₯βˆ’135(π‘₯βˆ’1)4π‘₯𝑓log4,ξ…žξ…ž(π‘₯)=(12π‘₯+6)9π‘₯ξ€·+26π‘₯2ξ€Έ9+6π‘₯+1π‘₯+ξ€·log9βˆ’9(12π‘₯+6)2π‘₯3+3π‘₯2ξ€Έ9+π‘₯π‘₯(log9)2βˆ’270β‹…4π‘₯log4βˆ’135(π‘₯βˆ’1)4π‘₯(log4)2,𝑓(3)(π‘₯)=12β‹…9π‘₯+(36π‘₯+18)9π‘₯ξ€·log9+36π‘₯2ξ€Έ9+6π‘₯+1π‘₯(log9)2+ξ€·βˆ’9β‹…122π‘₯3+3π‘₯2ξ€Έ9+π‘₯π‘₯(log9)3βˆ’405β‹…4π‘₯(log4)2βˆ’135(π‘₯βˆ’1)4π‘₯(log4)3,𝑓(4)ξ€·(π‘₯)=π‘Žπ‘₯3+𝑏π‘₯2ξ€Έ9+𝑐π‘₯+𝑑π‘₯βˆ’(𝑒π‘₯+π‘š)4π‘₯,(2.4) whereπ‘Ž=2(log9)4>0,𝑏=3(log9)4+24(log9)3>0,𝑐=(log9)4+24(log9)3+72(log9)2>0,𝑑=4(log9)3+36(log9)2+48(log9)>0,𝑒=135(log4)4>0,π‘š=540(log4)3βˆ’135(log4)4β‰ˆ940.059>0.(2.5) Then let 𝐻(π‘₯)=(π‘Žπ‘₯3+𝑏π‘₯2+𝑐π‘₯+𝑑)(9/4)π‘₯/(𝑒π‘₯+π‘š); we compute π»ξ…ž(π‘₯)=(𝑙(π‘₯)/(𝑒π‘₯+π‘š)2)(9/4)π‘₯, where𝑙(π‘₯)=π‘Ž4π‘₯4+π‘Ž3π‘₯3+π‘Ž2π‘₯2+π‘Ž1π‘₯+π‘Ž0,π‘Ž49=π‘Žπ‘’log4π‘Ž>0,39=2π‘Žπ‘’+(𝑒𝑏+π‘Žπ‘š)log4π‘Ž>0,29=𝑏𝑒+3π‘Žπ‘š+(𝑒𝑐+π‘šπ‘)log4π‘Ž>0,19=2π‘π‘š+(π‘šπ‘+𝑑𝑒)log4π‘Ž>0,0ξ‚€9=π‘šπ‘+𝑑log4ξ‚βˆ’π‘’π‘‘β‰ˆ671800>0.(2.6) As we can see, all coefficients of the polynomial 𝑙(π‘₯) are positive integers. When π‘₯>2, we have 𝑙(π‘₯)>0 and π»ξ…ž(π‘₯)>0. In view of that 𝐻(2)β‰ˆ8.4763>1,𝑓(4)(2)β‰ˆ231740>0,𝑓(3)(2)β‰ˆ67857>0,π‘“ξ…žξ…ž(2)β‰ˆ16922>0,π‘“ξ…ž(2)β‰ˆ2849.9>0, we have that 𝐻(π‘₯)>1 and 𝑓(4)(π‘₯)>0 for π‘₯>2. We can also conclude that 𝑓(𝑖)(π‘₯)(𝑖=3,2,1,0) is increasing on [2,+∞), respectively. Since 𝑓(2)=0, we have 𝑓(π‘₯)β‰₯0 for π‘₯β‰₯2. So the proof of inequality (2.3) is completed. Furthermore, limπ‘₯β†’0+(𝐴(π‘₯)/𝐡(π‘₯))=π‘Ž2/𝑏2=(24/5!βˆ’26/6!)/((33βˆ’3)/4β‹…3!)=2/45; the proof of Theorem 1.3 is completed.

3. Another Proof of Theorem 1.2

We simplify the double inequality (1.4) into another form: 2<45(π‘₯/sinπ‘₯)2+π‘₯/tanπ‘₯βˆ’2π‘₯3<2sinπ‘₯πœ‹βˆ’16πœ‹3πœ‹,0<π‘₯<2.(3.1) Here we will discuss the monotonicity of the function 𝑔(π‘₯)=((π‘₯/sinπ‘₯)2+π‘₯/tanπ‘₯βˆ’2)/π‘₯3sinπ‘₯=((1/sinπ‘₯)(π‘₯/sinπ‘₯)2+π‘₯cosπ‘₯/sin2π‘₯βˆ’2/sinπ‘₯)/π‘₯3. If the function 𝑔(π‘₯) is increasing for 0<π‘₯<πœ‹/2 and both limπ‘₯β†’0+𝑔(π‘₯)=2/45 and limπ‘₯β†’(πœ‹/2)βˆ’π‘”(π‘₯)=2/πœ‹βˆ’16/πœ‹3 are right, the proof of equality (1.4) is completed.

From [9] or [10, page 75], we know that for 0<|π‘₯|<πœ‹ the equality 1=1sinπ‘₯π‘₯+βˆžξ“π‘›=122π‘›βˆ’2||𝐡(2𝑛)!2𝑛||π‘₯2π‘›βˆ’1(3.2) holds. So we can also know that for 0<|π‘₯|<πœ‹cosπ‘₯sin2π‘₯=ξ‚€βˆ’1sinπ‘₯ξ…ž=1π‘₯2βˆ’βˆžξ“π‘›=122π‘›βˆ’2||𝐡(2𝑛)!2𝑛||(2π‘›βˆ’1)π‘₯2π‘›βˆ’2,1sin3π‘₯=ξ‚΅βˆ’cosπ‘₯2sin2π‘₯ξ‚Άξ…ž+1=12sinπ‘₯π‘₯3+12βˆžξ“π‘›=222π‘›βˆ’2||𝐡(2𝑛)!2𝑛||(2π‘›βˆ’1)(2π‘›βˆ’2)π‘₯2π‘›βˆ’3+1+12π‘₯2βˆžξ“π‘›=122π‘›βˆ’2||𝐡(2𝑛)!2𝑛||π‘₯2π‘›βˆ’1(3.3) hold. Then we compute βˆ‘π‘”(π‘₯)=βˆžπ‘›=2π‘Žπ‘›π‘₯2π‘›βˆ’4 by using the results above, whereπ‘Žπ‘›=1222π‘›βˆ’2(||𝐡2𝑛)!2𝑛||1(2π‘›βˆ’1)(2π‘›βˆ’2)+222π‘›βˆ’2βˆ’2(||𝐡2π‘›βˆ’2)!2π‘›βˆ’2||βˆ’22π‘›βˆ’2||𝐡(2𝑛)!2𝑛||2(2π‘›βˆ’1)βˆ’22π‘›βˆ’2||𝐡(2𝑛)!2𝑛||=1222π‘›βˆ’2βˆ’2||𝐡(2π‘›βˆ’2)!2π‘›βˆ’2||+(2π‘›βˆ’1)(2π‘›βˆ’2)βˆ’2(2π‘›βˆ’1)βˆ’4ξ€·22(2𝑛)!2𝑛||π΅βˆ’22𝑛||=1222π‘›βˆ’2βˆ’2||𝐡(2π‘›βˆ’2)!2π‘›βˆ’2||+2𝑛(2π‘›βˆ’5)ξ€·22(2𝑛)!2𝑛||π΅βˆ’22𝑛||.(3.4) When 𝑛=2, we can compute π‘Ž2=(1/2)(2/2!)|𝐡2|+(βˆ’4/2β‹…4!)β‹…14β‹…|𝐡4|=(1/2)β‹…(1/6)βˆ’(7/6)β‹…(1/30)=2/45>0 by using |𝐡2|=1/6 and |𝐡4|=1/30. Furthermore, there is an obvious fact that π‘Žπ‘›>0 for 𝑛β‰₯3. So far, we can demonstrate that π‘Žπ‘›>0 for all 𝑛β‰₯2. So the function 𝑔(π‘₯) is increasing on (0,πœ‹/2). Evidently, limπ‘₯β†’0+𝑔(π‘₯)=2/45 and limπ‘₯β†’(πœ‹/2)βˆ’π‘”(π‘₯)=2/πœ‹βˆ’16/πœ‹3 are true. So the proof of the double inequality of (1.4) is completed.

Remark 3.1. Wilker's inequalities (1.1) and (1.2) have been further refined by many scholars in the past few years; the readers can refer to [11–16].