Abstract

Iterative approximation of fixed points of nonexpansive mapping is a very active theme in many aspects of mathematical and engineering areas, in particular, in image recovery and signal processing. Because the errors usually occur in few places, it is necessary to show that whether the iterative algorithm is robust or not. In the present work, we prove that Krasnoselski-Mann's algorithm is robust for asymptotically nonexpansive mapping in a Banach space setting. Our results generalize the corresponding results existing in the literature.

1. Introduction

Many practical problems can be formulated as the fixed point problem of ๐‘ฅ=๐‘‡๐‘ฅ, where ๐‘‡ is a nonexpansive mapping. Iterative methods as a powerful tool are often used to approximate the fixed points of such mapping. It has been show that the methods used to find fixed points of nonexpansive mapping covered a widely applied mathematics problems, such as the convex feasibility problem [1โ€“3] and the split feasibility problem [4โ€“6]. It is recommended for interested reader to [7] for an extensive study on the theory about iterative fixed point theory.

Let ๐‘‹ be a real Banach space. ๐‘‡โˆถ๐‘‹โ†’๐‘‹ is called a nonexpansive mapping if for any ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, โ€–๐‘‡๐‘ฅโˆ’๐‘‡๐‘ฆโ€–โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–. Krasnoselski-Mann's iteration method for finding fixed points of ๐‘‡ is defined by foranyinitial๐‘ฅ0โˆˆ๐‘‹,๐‘ฅ๐‘›+1=๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘‡๐‘ฅ๐‘›,๐‘›โ‰ฅ0,(1.1) where {๐›ผ๐‘›} is a sequence in [0,1].

In 2001, Combettes [8] considered a parallel projection method algorithm in signal synthesis problems in a real Hilbert space ๐ป as follows:๐‘ฅ๐‘›+1=๐‘ฅ๐‘›+๐œ†๐‘›๎ƒฉ๐‘š๎“๐‘–=1๐œ”๐‘–๎€ท๐‘ƒ๐‘–๐‘ฅ๐‘›+๐‘๐‘–,๐‘›๎€ธโˆ’๐‘ฅ๐‘›๎ƒช,(1.2) where {๐œ†๐‘›}โŠ†(0,2), {๐œ”๐‘–}๐‘š๐‘–=1 are positive weights such that โˆ‘๐‘š๐‘–=1๐œ”๐‘–=1, ๐‘ƒ๐‘– is the projection of a signal ๐‘ฅโˆˆ๐ป onto a closed convex subset ๐‘†๐‘– of ๐ป, and ๐‘๐‘–,๐‘› stands for the error made in computing the projection onto ๐‘†๐‘– at each iteration ๐‘›. He firstly proved that the sequence {๐‘ฅ๐‘›} generated by (1.2) converges weakly to a point in ๐บ, where โ‹‚๐บโˆถ=๐‘š๐‘–=1๐‘†๐‘–.

Kim and Xu [9] generalized the results of Combettes [8] from Hilbert spaces to uniformly convex Banach spaces and obtained its equivalent form as follows: ๐‘ฅ๐‘›+1=๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๎€ท๐‘‡๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ,๐‘›โ‰ฅ0,(1.3) where ๐›ผ๐‘›โˆถ=๐œ†๐‘›/2โˆˆ(0,1), ๐‘’๐‘›โˆ‘โˆถ=2๐‘š๐‘–=1๐œ”๐‘–๐‘๐‘–,๐‘›, and ๐‘‡ is nonexpansive. They proved that the weak convergence of the (1.3) in a uniformly convex Banach space. More precisely, they proved that the following main theorems.

Theorem 1.1 (see [9]). Assume that ๐‘‹ is a uniformly convex Banach space. Assume, in addition, that either ๐‘‹โˆ— has the Kadec-Klee property or ๐‘‹ satisfies Opial's property. Let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be a nonexpansive mapping such that ๐น(๐‘‡)โ‰ โˆ…(๐น(๐‘‡) denotes the set of fixed points ofโ€‰โ€‰๐‘‡, that is, ๐น(๐‘‡)={๐‘ฅโˆˆ๐‘‹โˆถ๐‘‡๐‘ฅ=๐‘ฅ}). Given an initial guess ๐‘ฅ0โˆˆ๐‘‹. Let {๐‘ฅ๐‘›} be generated by (1.3) and satisfy the following properties: (i)โˆ‘โˆž๐‘›=0๐›ผ๐‘›(1โˆ’๐›ผ๐‘›)=โˆž,(ii)โˆ‘โˆž๐‘›=0๐›ผ๐‘›โ€–๐‘’๐‘›โ€–<โˆž. Then the sequence {๐‘ฅ๐‘›} converges weakly to a fixed point ofโ€‰โ€‰๐‘‡.

Theorem 1.2 (see [9]). Let ๐ถ be a nonempty closed convex subset of a Hilbert space ๐ป and ๐‘‡โˆถ๐ถโ†’๐ถ a nonexpansive mapping with ๐น(๐‘‡)โ‰ โˆ…. Given an initial guess ๐‘ฅ0โˆˆ๐‘‹. Let {๐‘ฅ๐‘›} be generated by either ๐‘ฅ๐‘›+1=๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ,๐‘›โ‰ฅ0,(1.4) or ๐‘ฅ๐‘›+1=๐‘ƒ๐ถ๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๎€ท๐‘‡๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ๎€ป,๐‘›โ‰ฅ0,(1.5) where the sequences {๐›ผ๐‘›} and {๐‘’๐‘›} are such that (i)โˆ‘โˆž๐‘›=0๐›ผ๐‘›(1โˆ’๐›ผ๐‘›)=โˆž,(ii)โˆ‘โˆž๐‘›=0๐›ผ๐‘›โ€–๐‘’๐‘›โ€–<โˆž.Then {๐‘ฅ๐‘›} converges weakly to a fixed point ofโ€‰โ€‰๐‘‡.

Very recently, Ceng et al. [10] extended the algorithm (1.3) of Kim and Xu [9] to Krasnoselski-Mann's algorithm with perturbed mapping defined by the following: ๐‘ฅ๐‘›+1=๐œ†๐‘›๐‘ฅ๐‘›+๎€ท1โˆ’๐œ†๐‘›๎€ธ๎€ท๐‘‡๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโˆ’๐œ†๐‘›๐œ‡๐‘›๐น๎€ท๐‘ฅ๐‘›๎€ธ,๐‘›โ‰ฅ0,(1.6) where ๐œ†๐‘›,๐œ‡๐‘›โˆˆ[0,1], and ๐น is a strongly accretive and strictly pseudocontractive mapping.

An important generalization of the class of nonexpansive mapping is asymptotically nonexpansive mapping (i.e., for ๐‘‡โˆถ๐ถโ†’๐ถ, if there exists a sequence {๐‘ข๐‘›}โŠ‚[0,+โˆž), lim๐‘›โ†’โˆž๐‘ข๐‘›=0 such that โ€–๐‘‡๐‘›๐‘ฅโˆ’๐‘‡๐‘›๎€ท๐‘ฆโ€–โ‰ค1+๐‘ข๐‘›๎€ธโ€–๐‘ฅโˆ’๐‘ฆโ€–,(1.7) for all ๐‘ฅ,๐‘ฆโˆˆ๐ถ and ๐‘›โ‰ฅ0), which was introduced by Goebel and Kirk [11]; they proved that if ๐ถ is a nonempty closed, convex, and bounded subset of a uniformly convex Banach space, then every asymptotically nonexpansive self-mapping has a fixed point. The class of asymptotically nonexpansive mapping has been studied by many authors and some recent results can be found in [12โ€“17] and references cited therein.

Inspired and motivated by the above works, the purpose of this paper is to extend the results of Kim and Xu [9] from nonexpansive mapping to asymptotically nonexpansive mapping. We prove that the Krasnoselski-Mann iterative sequence converges weakly to the fixed point of asymptotically nonexpansive mapping.

2. Preliminaries

In this section, we collect some useful results which will be used in the following section.

We use the following notations:(i)โ‡€ for weak convergence and โ†’ for strong convergence,(ii)๐œ”๐‘ค(๐‘ฅ๐‘›)={๐‘ฅโˆถโˆƒ๐‘ฅ๐‘›๐‘—โ‡€๐‘ฅ} denotes the weak ๐œ”-limit set of {๐‘ฅ๐‘›}.

It is well known that a Hilbert space ๐ป satisfies Opial's condition [18]; that is, for each sequence {๐‘ฅ๐‘›} in ๐ป which converges weakly to a point ๐‘ฅโˆˆ๐ป, one has liminf๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘ฅ<liminf๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘ฆ,(2.1) for all ๐‘ฆโˆˆ๐ป, ๐‘ฆโ‰ ๐‘ฅ.

Recall that given a closed convex subset of ๐ถ of a real Hilbert space ๐ป, the nearest point projection ๐‘ƒ๐ถ from ๐ป onto ๐ถ assigns to each ๐‘ฅโˆˆ๐ถ its nearest point denoted by ๐‘ƒ๐ถ๐‘ฅ in ๐ถ from ๐‘ฅ to ๐ถ; that is, ๐‘ƒ๐ถ๐‘ฅ is the unique point in ๐‘‹ with the property โ€–โ€–๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฅโ€–โ€–โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฆโˆˆ๐ถ.(2.2)

A Banach space ๐‘‹ is said to have the Kadec-Klee property [19] if for any sequence {๐‘ฅ๐‘›} in ๐‘‹, ๐‘ฅ๐‘›โ‡€๐‘ฅ and โ€–๐‘ฅ๐‘›โ€–โ†’โ€–๐‘ฅโ€– imply that ๐‘ฅ๐‘›โ†’๐‘ฅ.

A mapping ๐‘‡ is said to be demiclosed at zero if whenever {๐‘ฅ๐‘›} is a sequence in ๐ท(๐‘‡) such that {๐‘ฅ๐‘›} converges weakly to ๐‘ฅโˆˆ๐ท(๐‘‡) and {๐‘‡๐‘ฅ๐‘›} converges strongly to zero, then ๐‘‡๐‘ฅ=0.

Lemma 2.1 (see [20]). Let ๐‘‹ be a real uniformly convex Banach space, let ๐ถ be a nonempty closed convex subset of ๐‘‹, and let ๐‘‡โˆถ๐ถโ†’๐‘‹ be an asymptotically nonexpansive mapping with a sequence {๐‘ข๐‘›}โŠ‚[0,โˆž) and lim๐‘›โ†’โˆž๐‘ข๐‘›=0; then (๐ผโˆ’๐‘‡) is demiclosed at zero.

Lemma 2.2 (see [21]). Given a number ๐‘Ÿ>0, a real Banach space is uniformly convex if and only if there exists a continuous strictly increasing function ๐œ™โˆถ[0,โˆž)โ†’[0,โˆž), ๐œ™(0)=0, such that โ€–โ€–๐œ†๐‘ฅ+(1โˆ’๐œ†)๐‘ฆ2โ‰ค๐œ†โ€–๐‘ฅโ€–2+(1โˆ’๐œ†)โ€–๐‘ฆโ€–2โˆ’๐œ†(1โˆ’๐œ†)๐œ™(โ€–๐‘ฅโˆ’๐‘ฆโ€–),(2.3) for all ๐œ†โˆˆ[0,1] and ๐‘ฅ,๐‘ฆโˆˆ๐‘‹ such that โ€–๐‘ฅโ€–โ‰ค๐‘Ÿ and โ€–๐‘ฆโ€–โ‰ค๐‘Ÿ.

Lemma 2.3 (see [22]). Let ๐‘‹ be a real uniformly convex Banach space such that its dual ๐‘‹โˆ— has Kadec-Klee property. Let {๐‘ฅ๐‘›} be a bounded sequence in ๐‘‹ and ๐‘ž1,๐‘ž2โˆˆ๐œ”๐‘ค({๐‘ฅ๐‘›}). Suppose that that lim๐‘›โ†’โˆžโ€–โ€–๐›ผ๐‘ฅ๐‘›+(1โˆ’๐›ผ)๐‘ž1โˆ’๐‘ž2โ€–โ€–(2.4) exists for all ๐›ผโˆˆ[0,1]. Then ๐‘ž1=๐‘ž2.

Lemma 2.4 (see [23]). Let {๐‘Ž๐‘›}, {๐‘๐‘›}, and {๐‘๐‘›} be sequences of nonnegative real numbers satisfying the inequality ๐‘Ž๐‘›+1โ‰ค๎€ท1+๐‘๐‘›๎€ธ๐‘Ž๐‘›+๐‘๐‘›,๐‘›โ‰ฅ1.(2.5) If โˆ‘โˆž๐‘›=1๐‘๐‘›โˆ‘<+โˆž,โˆž๐‘›=1๐‘๐‘›<+โˆž, then (i) lim๐‘›โ†’โˆž๐‘Ž๐‘› exists. (ii) In particular, if liminf๐‘›โ†’โˆž๐‘Ž๐‘›=0, one has lim๐‘›โ†’โˆž๐‘Ž๐‘›=0.

3. Main Results

We state our first theorem as follows.

Theorem 3.1. Suppose that ๐‘‹ is a uniformly convex Banach space, and ๐‘‹โˆ— has the Kadec-Klee property or ๐‘‹ satisfies Opial's property. Let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be an asymptotically nonexpansive mapping with โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž. For any ๐‘ฅ0โˆˆ๐‘‹, the sequence {๐‘ฅ๐‘›} is generated by the following Krasnoselski-Mann's algorithm: ๐‘ฅ๐‘›+1=๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ,๐‘›โ‰ฅ0,(3.1) where {๐›ผ๐‘›} and {๐‘’๐‘›} satisfy the following conditions: (i)0<๐‘Ž<๐›ผ๐‘›<๐‘<1, for some ๐‘Ž,๐‘โˆˆ(0,1) and for all ๐‘›โ‰ฅ0;(ii)โˆ‘โˆž๐‘›=0๐›ผ๐‘›โ€–๐‘’๐‘›โ€–<โˆž.If ๐น(๐‘‡)โ‰ โˆ…, then the sequence {๐‘ฅ๐‘›} converges weakly to a fixed point ofโ€‰โ€‰๐‘‡.

For the sake of convenience, we need the following lemmas.

Lemma 3.2. Let ๐‘‹ be a real normed linear space and let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be an asymptotically nonexpansive mapping with โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž. Let {๐‘ฅ๐‘›} be the sequence as defined in (3.1) and satisfy the conditions in Theorem 3.1. Suppose that ๐น(๐‘‡)โ‰ โˆ…; then the limit lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘โ€– exists for ๐‘โˆˆ๐น(๐‘‡).

Proof. By (3.1), one has โ€–โ€–๐‘ฅ๐‘›+1โ€–โ€–=โ€–โ€–๎€ทโˆ’๐‘1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘+๐‘’๐‘›๎€ธโ€–โ€–โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–.(3.2) Since โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž and โˆ‘โˆž๐‘›=0๐›ผ๐‘›โ€–๐‘’๐‘›โ€–<โˆž, we obtain from Lemma 2.4 that the limit lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘โ€– exists. Furthermore, the sequence {๐‘ฅ๐‘›} is bounded.

Lemma 3.3. Let ๐‘‹ be a real uniformly convex Banach space and let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be an asymptotically nonexpansive mapping with โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž. Let {๐‘ฅ๐‘›} be the sequence as defined in (3.1) and satisfy the conditions in Theorem 3.1. Suppose that ๐น(๐‘‡)โ‰ โˆ…; then lim๐‘›โ†’โˆžโ€–๐‘ก๐‘ฅ๐‘›+(1โˆ’๐‘ก)๐‘โˆ’๐‘žโ€– exists for all ๐‘กโˆˆ[0,1] and ๐‘,๐‘žโˆˆ๐น(๐‘‡).

Proof. Let ๐‘‘๐‘›(๐‘ก)=โ€–๐‘ก๐‘ฅ๐‘›+(1โˆ’๐‘ก)๐‘โˆ’๐‘žโ€–; then lim๐‘›โ†’โˆž๐‘‘๐‘›(0)=โ€–๐‘โˆ’๐‘žโ€– exists. It follows from Lemma 3.2 that lim๐‘›โ†’โˆž๐‘‘๐‘›(1)=lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘žโ€– exists. Next, we show that lim๐‘›โ†’โˆž๐‘‘๐‘›(๐‘ก) exists for any ๐‘กโˆˆ(0,1).
Let ๐‘‡๐‘›๐‘ฅโˆถ=(1โˆ’๐›ผ๐‘›)๐‘ฅ+๐›ผ๐‘›๐‘‡๐‘›๐‘ฅ+๐›ผ๐‘›๐‘’๐‘›, for all ๐‘ฅโˆˆ๐‘‹. For any ๐‘ฅ,๐‘งโˆˆ๐‘‹, one has โ€–โ€–๐‘‡๐‘›๐‘ฅโˆ’๐‘‡๐‘›๐‘งโ€–โ€–=โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๎€ธ(๐‘ฅโˆ’๐‘ง)+๐›ผ๐‘›(๐‘‡๐‘›๐‘ฅโˆ’๐‘‡๐‘›๐‘ง)โ€–โ€–โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–๐‘ฅโˆ’๐‘งโ€–+๐›ผ๐‘›โ€–๐‘‡๐‘›๐‘ฅโˆ’๐‘‡๐‘›โ‰ค๎€ท๐‘งโ€–1โˆ’๐›ผ๐‘›๎€ธโ€–๐‘ฅโˆ’๐‘งโ€–+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธโ‰ค๎€ทโ€–๐‘ฅโˆ’๐‘งโ€–1+๐‘ข๐‘›๎€ธโ€–๐‘ฅโˆ’๐‘งโ€–.(3.3) Set ๐‘†๐‘›,๐‘š=๐‘‡๐‘›+๐‘šโˆ’1๐‘‡๐‘›+๐‘šโˆ’2โ‹ฏ๐‘‡๐‘›, ๐‘šโ‰ฅ1. The rest of the proof is the same as Lemmaโ€‰โ€‰3.3 of [14, 16]. This completes the proof of Lemma 3.3.

Now, we give the proof of Theorem 3.1.

Proof. Let ๐‘โˆˆ๐น(๐‘‡). With the help of Lemma 2.2 and the inequality โ€–๐‘Ž+๐‘โ€–2โ‰คโ€–๐‘Žโ€–2+2โ€–๐‘Žโ€–โ‹…โ€–๐‘โ€–+โ€–๐‘โ€–2, one has โ€–โ€–๐‘ฅ๐‘›+1โ€–โ€–โˆ’๐‘2=โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๐‘’๐‘›โ€–โ€–2โ‰คโ€–โ€–(1โˆ’๐›ผ๐‘›)(๐‘ฅ๐‘›โˆ’๐‘)+๐›ผ๐‘›(๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘)2+2๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‹…โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–โˆ’๐‘+๐›ผ2๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2+๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐œ™๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธ+2๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–๎€ท๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–๎€ธโˆ’๐‘+๐›ผ2๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธ2โ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐œ™๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธ+2๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ2๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–2โ‰ค๎€ท1+๐‘ข๐‘›๎€ธ2โ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐œ™๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธ+2๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ2๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–2,(3.4) which follows that ๐‘Ž๎€ทโ€–โ€–๐‘ฅ(1โˆ’๐‘)๐œ™๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธโ‰ค๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐œ™๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธโ‰ค๎€ท1+๐‘ข๐‘›๎€ธ2โ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โ€–โ€–โˆ’๐‘2+2๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ2๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–2.(3.5) This implies that โˆž๎“๐‘›=0๐œ™๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–๎€ธ<โˆž.(3.6) Therefore lim๐‘›โ†’โˆž๐œ™(โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–)=0. Since ๐œ™ is strictly increasing and continuous function with ๐œ™(0)=0, then lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–=0. Also, one has the following inequalities: โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–โ‰ค๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ€–โ€–๐‘‡โŸถ0as๐‘›โŸถโˆž,(3.7)๐‘›๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›+1โ€–โ€–=โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›โˆ’๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโ€–โ€–=โ€–โ€–๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘›๐‘ฅ๐‘›๎€ธ+๎€ท1โˆ’๐›ผ๐‘›๐‘‡๎€ธ๎€ท๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›๎€ธโˆ’๐›ผ๐‘›๐‘’๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–+๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–+๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–=๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›๎€ธ+๐›ผ๐‘›๐‘’๐‘›โ€–โ€–+๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธ๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๎€ท1+๐‘ข๐‘›๎€ธ๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๎€ท1+๐‘ข๐‘›๎€ธ๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โŸถ0as๐‘›โŸถโˆž.(3.8) On the other hand, โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘ฅ๐‘›+1โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘›+1๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐‘‡๐‘›+1๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘ฅ๐‘›+1โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘›+1๐‘ฅ๐‘›+1โ€–โ€–+๎€ท1+๐‘ข1๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›+1โ€–โ€–โŸถ0as๐‘›โŸถโˆž.(3.9) By (3.7)โ€“(3.9), we obtain โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘ฅ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐‘‡๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘ฅ๐‘›โ€–โ€–โ‰ค๎€ท2+๐‘ข1๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘ฅ๐‘›+1โ€–โ€–โŸถ0as๐‘›โŸถโˆž,(3.10) that is, lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘ฅ๐‘›โ€–=0.
From Lemma 3.2, we know that {๐‘ฅ๐‘›} is bounded. Since ๐‘‹ is a uniformly convex Banach space, {๐‘ฅ๐‘›} has a convergent subsequence {๐‘ฅ๐‘›๐‘—}. By the demiclosedness principle of ๐ผโˆ’๐‘‡, we obtain ๐œ”๐‘คโŠ†๐น(๐‘‡). The rest of proof is followed by the standard argument in Theoremโ€‰โ€‰3.3 of Kim and Xu [9]. This completes the proof.

Theorem 3.4. Let ๐ถ be a nonempty closed convex subset of a Hilbert space ๐ป and let ๐‘‡โˆถ๐ถโ†’๐ถ be an asymptotically nonexpansive mapping with โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž. For any ๐‘ฅ0โˆˆ๐‘‹, the sequence {๐‘ฅ๐‘›} is generated by either ๐‘ฅ๐‘›+1=๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ,๐‘›โ‰ฅ0,(3.11) or ๐‘ฅ๐‘›+1=๐‘ƒ๐ถ๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธ๎€ป,๐‘›โ‰ฅ0,(3.12) where the sequences {๐›ผ๐‘›} and {๐‘’๐‘›} are such that (i)0<๐‘Ž<๐›ผ๐‘›<๐‘<1, for some ๐‘Ž,๐‘โˆˆ(0,1) and for all ๐‘›โ‰ฅ0;(ii)โˆ‘โˆž๐‘›=0๐›ผ๐‘›โ€–๐‘’๐‘›โ€–<โˆž. If ๐น(๐‘‡)โ‰ โˆ…, then {๐‘ฅ๐‘›} converges weakly to a fixed point ofโ€‰โ€‰๐‘‡.

Proof. Let ๐‘โˆˆ๐น(๐‘‡). By (3.11), one has โ€–โ€–๐‘ฅ๐‘›+1โ€–โ€–=โ€–โ€–โˆ’๐‘๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›โ€–โ€–โ‰ค๎€ท๎€ธ๎€ปโˆ’๐‘1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโ€–โ€–โ‰ค๎€ทโˆ’๐‘1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›โ€–โ€–โ‰ค๎€ทโˆ’๐‘1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธโ€–๐‘ฅ๐‘›โˆ’๐‘โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–.(3.13) Notice the condition (ii) and โˆ‘โˆž๐‘›=0๐‘ข๐‘›<โˆž; by Lemma 2.4, lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘โ€– exists. Hence, {๐‘ฅ๐‘›} is bounded.
By the well-known inequality โ€–๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘ฆโ€–2=๐‘กโ€–๐‘ฅโ€–2+(1โˆ’๐‘ก)โ€–๐‘ฆโ€–2โˆ’๐‘ก(1โˆ’๐‘ก)โ€–๐‘ฅโˆ’๐‘ฆโ€–2, for all ๐‘ฅ,๐‘ฆโˆˆ๐ป and ๐‘กโˆˆ[0,1], we obtain โ€–๐‘ฅ๐‘›+1โˆ’๐‘โ€–2=โ€–โ€–๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›โ€–โ€–๎€ธ๎€ปโˆ’๐‘2=โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€บ๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโˆ’๐‘‡๐‘›๐‘ฅ๐‘›๎€ปโ€–โ€–2โ‰คโ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–โˆ’๐‘2+โ€–โ€–๐›ผ๐‘›๎€บ๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโˆ’๐‘‡๐‘›๐‘ฅ๐‘›๎€ปโ€–โ€–2+2๐›ผ๐‘›โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๐‘ฅ๎€ธ๎€ท๐‘›๎€ธโˆ’๐‘+๐›ผ๐‘›๎€ท๐‘‡๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–โ‹…โ€–โ€–๐‘ƒโˆ’๐‘๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–โ‰ค๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2+๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–2+2๐›ผ๐‘›๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘+๐›ผ๐‘›๎€ท1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โ€–โ€–๎€ปโ€–โ€–๐‘’โˆ’๐‘๐‘›โ€–โ€–โ‰ค๎€ท1+๐‘ข๐‘›๎€ธ2โ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–2๎€ท+21+๐‘ข๐‘›๎€ธ๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ€–โ€–๐‘ฅ๐‘›โ€–โ€–.โˆ’๐‘(3.14) That is, โ€–โ€–๐‘ฅ๐‘Ž(1โˆ’๐‘)๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–2โ‰ค๐›ผ๐‘›๎€ท1โˆ’๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–2โ‰ค๎€ท1+๐‘ข๐‘›๎€ธ2โ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โ€–โ€–โˆ’๐‘2๎€ท+21+๐‘ข๐‘›๎€ธ๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โ€–โ€–๐‘ฅ๐‘›โ€–โ€–.โˆ’๐‘(3.15) This implies that โˆž๎“๐‘›=0โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–โ€–2<โˆž.(3.16) Therefore lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘›๐‘ฅ๐‘›โ€–=0. We also have โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–=โ€–โ€–๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›+๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโˆ’๐‘ฅ๐‘›โ€–โ€–โ‰ค๐›ผ๐‘›โ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โŸถ0as๐‘›โŸถโˆž,โ€–๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›+1โ€–โ€–๐‘‡โ€–=๐‘›๐‘ฅ๐‘›+1โˆ’๎€ท1โˆ’๐›ผ๐‘›๎€ธ๐‘ฅ๐‘›โˆ’๐›ผ๐‘›๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›๎€ธโ€–โ€–=โ€–โ€–๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+1โˆ’๐‘‡๐‘›๐‘ฅ๐‘›๎€ธ+๎€ท๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›๎€ธ+๐›ผ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ƒ๐ถ๎€ท๐‘‡๐‘›๐‘ฅ๐‘›+๐‘’๐‘›โ€–โ€–โ‰ค๎€ท๎€ธ๎€ธ1+๐‘ข๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–+๎€ท1+๐›ผ๐‘›๎€ธโ€–โ€–๐‘‡๐‘›๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–+๐›ผ๐‘›โ€–โ€–๐‘’๐‘›โ€–โ€–โŸถ0as๐‘›โŸถโˆž.(3.17) It follows from (3.9) and (3.10) that lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›โˆ’๐‘‡๐‘ฅ๐‘›โ€–=0. Since a Hilbert space ๐ป must be a uniformly convex Banach space and satisfy Opial's property, then the rest of proof is the same as Theorem 3.1. So it is omitted.

Acknowledgment

This work was supported by The National Natural Science Foundations of China (60970149) and The Natural Science Foundations of Jiangxi Province (2009GZS0021, 2007GQS2063).