Table of Contents
ISRN Communications and Networking
Volume 2011 (2011), Article ID 723814, 11 pages
http://dx.doi.org/10.5402/2011/723814
Research Article

On the Feasibility of Using 802.11p for Communication of Electronic Toll Collection Systems

1Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
2Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

Received 28 May 2011; Accepted 6 July 2011

Academic Editor: F. Vasques

Copyright © 2011 Mei-Wen Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.-Y. Shieh, C.-C. Hsu, S.-L. Tung, P.-W. Lu, T.-H. Wang, and S.-L. Chang, “Design of infrared electronic-toll-collection systems with extended communication areas and performance of data transmission,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 25–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Nilekani, “ETC Report,” Tech. Rep., 2010, http://morth.nic.in/writereaddata/sublinkimages/ETC_Report5330162913.pdf. View at Google Scholar
  3. T. H. Saijie Lu and Z. Gao, “Design of electronic toll collection system based on global positioning system technique,” in Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM '09), 2009.
  4. W.-H. Lee, S.-S. Tseng, and C.-H. Wang, “Design and implementation of electronic toll collection system based on vehicle positioning system techniques,” Computer Communications, vol. 31, no. 12, pp. 2925–2933, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. W.-Y. Shieh, W.-H. Lee, S.-L. Tung, and C.-D. Ho, “A novel architecture for multilane-free-flow electronic-toll-collection systems in the millimeter-wave range,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp. 294–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Nowacki, I. Mitraszewska, and T. Kaminski, “The polish pilot project of automatic toll collection system,” in Proceedings of the 6th International Scientific Conference Transbaltica, 2009.
  7. W.-Y. Shieh, C.-C. J. Hsu, and T.-H. Wang, “A problem of infrared electronic-toll-collection systems: the irregularity of LED radiation pattern and emitter design,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 152–163, 2011. View at Publisher · View at Google Scholar
  8. W. Y. Shieh, W. H. Lee, S. L. Tung, and C. D. Ho, “A novel architecture for multilanefree-flow electronic-toll-collection systems in the millimeter-wave range,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp. 294–301, 2005. View at Publisher · View at Google Scholar
  9. W.-H. Lee, B.-S. Jeng, S.-S. Tseng, and C.-H. Wang, “Electronic toll collection based on vehicle-positioning system techniques,” in Proceedings of the IEEE International Conference on Networking, Sensing and Control (ICNSC '04), vol. 1, pp. 350–353, 2004.
  10. W. Shieh, W. Lee, S. Tung, B. Jeng, and C. Liu, “Analysis of the optimum configuration of roadside units and onboard units in dedicated short-range communication systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 565–571, 2006. View at Publisher · View at Google Scholar
  11. I. I. M. Salleh, E. K. U.-A. M. Yusoff, and P. Z. B. A. Aziz, “Electronic toll collection (ETC) systems development in malaysia,” PIARC International Seminar on Intelligent Transport System (ITS) In Road Network Operations UCB/EECS-2008-33, 2006. View at Google Scholar
  12. D. Maltz, J. Broch, and D. Johnson, “Quantitative lessons from a full-scale multi-hop wireless ad hoc network testbed,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '00), vol. 3, pp. 992–997, 2000.
  13. J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wireless sensor networks,” in Proceedings of the ACM International Conference on Embedded Networked Sensor Systems (Sensys '03), 2003.
  14. D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level measurements from an 802.11b mesh network,” in Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM '04), vol. 34, October 2004.
  15. D. Kotz, C. Newport, and C. Elliott, “The mistaken axioms of wireless-network research,” Tech. Rep. TR2003-647, Dartmouth CS Department, 2003. View at Google Scholar
  16. D. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high throughput path metric for multi-hop wireless routing,” in Proceedings of the ACM Annual International Conference on Mobile Computing and Networking (MobiCom '03), vol. 11, 2003.
  17. “ITRI WAVE/DSRC Communication Unit (IWCU) Users Guide,” Version 1.03.
  18. “Family of Standards for Wireless Access in Vehicular Environments (WAVE),” IEEE 1609.
  19. “Standard specification for telecommunications and information exchange between roadside and vehicle systems -5.9 GHz Band DSRC MAC and PHY Specifications,” ASTM, Article ID e2213-03, 2003. View at Publisher · View at Google Scholar
  20. F. Bai, T. ElBatt, G. Holland, H. Krishnan, and V. Sadekar, “Towards characterizing and classifying communicationbased automotive applications from a wireless networking perspective,” in Proceedings of the IEEE Workshop on Automotive Networking and Applications (AutoNet '06), 2006.
  21. D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9 GHz DSRC-based vehicular safety communication,” IEEE Wireless Communications, vol. 13, no. 5, pp. 36–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. “IEEE 1609.1 Trial-Use Standard for Wireless Accesses in Vehicular Environments (WAVE) V Security Services for Applications and Management Messages,” IEEE Vehicular Technology Society. October 2006.
  23. “IEEE 1609.2 Trial-Use Standard for Wireless Accesses in Vehicular Environments (WAVE) V Security Services for Applications and Management Messages,” IEEE Vehicular Technology Society. October 2006.
  24. “IEEE 1609.3 Trial-Use Standard for Wireless Accesses in Vehicular Environments (WAVE) V Security Services for Applications and Management Messages,” IEEE Vehicular Technology Society. October 2006.
  25. “IEEE 1609.4 Trial-Use Standard for Wireless Accesses in Vehicular Environments (WAVE) V Security Services for Applications and Management Messages,” IEEE Vehicular Technology Society. October 2006.
  26. J. Miller and E. Horowitz, “Freesim v a free real-time freeway traffic simulator,” in Proceedings of the IEEE International Thermal Spraying Conference (ITSC '07), pp. 18–23, 2007.
  27. K. C. Lan, C. M. Huang, and C. Z. Tsai, “On the locality of vehicle movement for vehicle-infrastructure communication,” in Proceedings of the IEEE International Top Spin Tour (ITST '08), pp. 116–120, 2008.
  28. A. Böhm and M. Jonsson, “Position-based data traffic prioritization in safety-critical, real-time vehicle-to-infrastructure communication,” in Proceedings of the IEEE International Conference on Communications (ICC '09), 2009.
  29. A. Khan, S. Sadhu, and M. Yeleswarapu, “A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks,” Department of Computer Science, University of California, 2008. View at Google Scholar
  30. M. Lacage, M. H. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: a practical approach,” in Proceedings of the ACM Symposium Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM '04), 2004.
  31. S. Eichler, “Performance evaluation of the IEEE 802.11p WAVE communication standard,” in Proceedings of the IEEE VTC-2007 Fall, pp. 2199–2203, 2007.
  32. I. C. Msadaa, P. Cataldi, and F. Filali, “A comparative study between 802.11p and mobileWiMAX-based V2I communication networks,” in Proceedings of the IEEE International Conference on Next Generation Mobile Applications, Services and Technologies(NGMAST '10), pp. 186–191, 2010.
  33. P. Keeratiwintakorn, E. Thepnorarat, and A. Russameesawang, “Ubiquitous communication for V2V and V2I for Thailand intelligent transportation system,” in Proceedings of the NTC International Conference, 2009.
  34. I. N. L. Tan, W. Tang, K. Laberteaux, and A. Bahai, “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” EECS Department UCB/EECS-2008-33, University of California, Berkeley, 2008. View at Google Scholar
  35. Cohdawireless, http://www.cohdawireless.com.
  36. “Information Technology V Open System Interconnection V Connection-Less Session Protocol: Protocol Specification,” ITU-T Recommendation X.235.
  37. “Information Technology V Open System Interconnection V Connection-Oriented Session Protocol: Protocol Specification,” ITU-T Recommendation X.225.
  38. “Information Technology V Open System Interconnection V Session Service Definition,” ITU-T Recommendation X.215.
  39. RFC 3261, “SIP: Session Initiation Protocol,” June 2002.
  40. RFC 4566, “SDP: Session Description Protocol,” April 2008.
  41. RFC 2974, “SAP: Session Announcement Protocol,” October 2000.
  42. G. S. Sidhu, R. F. Andrews, and A. B. Oppenheimer, Inside AppleTalk, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1990.
  43. RFC 1334, “PAP: Password authentication protocol,” October 1992.
  44. “C Programmer's Guide to NetBIOS, IPX, and SPX,” Sams Publishing, 1992.
  45. Ns-2 wiki, http://nsnam.isi.edu/nsnam/index.php/Main_Page.
  46. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535–547, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. Industrial Technology Research Institute, ITRI, http://www.itri.org.tw/eng/.
  48. Automotive Research & Testing Center, ARTC, http://www.artc.org.tw/index_en.aspx.