Table of Contents
ISRN Anesthesiology
Volume 2011 (2011), Article ID 730483, 4 pages
http://dx.doi.org/10.5402/2011/730483
Clinical Study

The Cost Implications of Replacing Soda Lime with Amsorb Plus in Clinical Practice

Department of Anesthesiology, South Infirmary-Victoria University Hospital, Cork, Ireland

Received 31 August 2011; Accepted 27 September 2011

Academic Editor: K. Higa

Copyright © 2011 Osman Ahmed and Stephen Mannion. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. Kharasch, K. M. Powers, and A. A. Artru, “Comparison of amsorb®, sodalime, and baralyme® degradation of volatile anesthetics and formation of carbon monoxide and compound A in swine in vivo,” Anesthesiology, vol. 96, no. 1, pp. 173–182, 2002. View at Google Scholar · View at Scopus
  2. R. I. Mazze and R. L. Jamison, “Low-flow (1 l/min) sevoflurane: is it safe?” Anesthesiology, vol. 86, no. 6, pp. 1225–1227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Morio, K. Fujii, N. Satoh et al., “Reaction of sevoflurane and its degradation products with soda lime: toxicity of the byproducts,” Anesthesiology, vol. 77, no. 6, pp. 1155–1164, 1992. View at Google Scholar · View at Scopus
  4. F. Marini, I. Bellugi, D. Gambi et al., “Compound A, formaldehyde and methanol concentrations during low-flow sevoflurane anaesthesia: comparison of three carbon dioxide absorbers,” Acta Anaesthesiologica Scandinavica, vol. 51, no. 5, pp. 625–632, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. “Carbon monoxide expostures during inhalation anaesthesia: the interaction between halogenated anaesthetic agents and carbon dioxide absorbents,” Health Devices, vol. 27, pp. 402–404, 1998.
  6. W. Funk, M. Gruber, K. Wild, and J. Hobbhahn, “Dry soda lime markedly degrades sevoflurane during simulated inhalation induction,” British Journal of Anaesthesia, vol. 82, no. 2, pp. 193–198, 1999. View at Google Scholar · View at Scopus
  7. H. J. Woehlck, M. Dunning III, and L. A. Connolly, “Reduction in the incidence of carbon monoxide exposures in humans undergoing general anesthesia,” Anesthesiology, vol. 87, no. 2, pp. 228–234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Baxter, K. Garton, and E. D. Kharasch, “Mechanistic aspects of carbon monoxide formation from volatile anesthetics,” Anesthesiology, vol. 89, no. 4, pp. 929–941, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Neumann, M. J. Laster, R. B. Weiskopf et al., “The elimination of sodium and potassium hydroxides from desiccated soda lime diminishes degradation of desflurane to carbon monoxide and sevoflurane to compound A but does not compromise carbon dioxide absorption,” Anesthesia & Analgesia, vol. 89, no. 3, pp. 768–773, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Murray, C. W. Renfrew, A. Bedi, C. B. McCrystal, D. S. Jones, and J. P. H. Fee, “Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems,” Anesthesiology, vol. 91, no. 5, pp. 1342–1348, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. http://www.apsf.org/newsletters/pdf/summer2005.pdf.
  12. E. Knolle, W. Linert, and H. Gilly, “The color change in CO2 absorbents on drying: an invitro study using moisture analysis,” Anesthesia & Analgesia, vol. 97, no. 1, pp. 151–155, 2003. View at Google Scholar
  13. E. Knolle, W. Linert, and H. Gilly, “Using Amsorb to detect dehydration of CO2 absorbents containing strong base,” Anesthesiology, vol. 97, no. 2, pp. 454–459, 2002. View at Publisher · View at Google Scholar