Table of Contents
ISRN Zoology
Volume 2011, Article ID 835274, 5 pages
http://dx.doi.org/10.5402/2011/835274
Research Article

Expression of the Lactate Dehydrogenase Gene from Eptatretus okinoseanus in Escherichia coli

1Faculty of Pharmaceutical Sciences, Toho University, Chiba 2748510, Japan
2Faculty of Science, Toho University, Chiba 2748510, Japan

Received 31 March 2011; Accepted 3 May 2011

Academic Editors: V. Almeida-Val and A. Ramirez-Bautista

Copyright © 2011 Yoshikazu Nishiguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Warburg and W. Christian, “Pyridin, der wasserstoffubertragende bestandteil von garungsfermenten,” Biochemische Zeitschrift, vol. 287, pp. 291–328, 1936. View at Google Scholar
  2. F. B. Straub, “Crystalline lactic dehydrogenase from heart muscle,” Biochemistry Journals, vol. 34, no. 4, pp. 483–486, 1940. View at Google Scholar
  3. F. A. Loewus and H. A. Stafford, “The enzymatic transfer of hydrogen by glyceric and lactic dehydrogenases,” The Journal of Biological Chemistry, vol. 235, pp. 3317–3321, 1960. View at Google Scholar · View at Scopus
  4. D. Dennis and N. O. Kaplan, “D- and L-lactic acid dehydrogenases in Lactobacillus plantarum,” The Journal of Biological Chemistry, vol. 235, pp. 810–818, 1960. View at Google Scholar · View at Scopus
  5. J. F. Biellmann and N. Rosenheimer, “Dogfish lactate dehydrogenase. The stereochemistry of hydrogen transfer,” FEBS Letters, vol. 34, no. 2, pp. 143–144, 1973. View at Publisher · View at Google Scholar · View at Scopus
  6. C. L. Markert and F. Moller, “Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns,” Proceedings of the National Academy of Sciences, vol. 45, no. 5, pp. 753–763, 1959. View at Google Scholar
  7. B. Prochazka and E. D. Wachsmuth, “Isozyme patterns of lactate dehydrogenase, creatine phosphokinase, phosphoglucomutase and aldolase guinea pig tissues during ontogeny,” Journal of Experimental Zoology, vol. 182, no. 2, pp. 201–210, 1972. View at Google Scholar · View at Scopus
  8. R. S. Holmes, “Evolution of lactate dehydrogenase genes,” FEBS Letters, vol. 28, no. 1, pp. 51–55, 1972. View at Google Scholar · View at Scopus
  9. R. Richterich, E. Gautier, W. Egli, K. Zuppinger, and E. Rossi, “Progressive muskeldystrophie,” Klinische Wochenschrift, vol. 39, no. 7, pp. 346–352, 1961. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Yoshida, K. Ishikawa, and M. Kitamura, “Studies on lactate dehydrogenase isozymes of body fluids (I), an improved method of agar-gel electrophoresis on microscope slides,” Seibutsu-Butsuri-Kagaku, vol. 11, pp. 69–74, 1966. View at Google Scholar
  11. T. Imai, K. Mochizuki, Y. Nishiguchi, S. Naito, and M. Yoshida, “Purification and amino acid sequence of L-lactate dehydrogenase from the skeletal muscle of the hagfish, Eptatretus okinoseanus,” Journal of Analytical Bio Science, vol. 20, pp. 341–348, 1997. View at Google Scholar
  12. T. Imai, Y. Nishiguchi, S. Naito, and M. Yoshida, “Purification and some properties of skeletal muscle lactate dehydrogenase from the Japanese hagfish, Myxine garmani,” Journal of Analytical Bio Science, vol. 20, pp. 307–314, 1997. View at Google Scholar
  13. Y. Nishiguchi, “Evolutionary implications of lactate dehydrogenases (LDHs) of hagfishes compared to lampreys: LDH cDNA sequences from Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus,” Zoological Science, vol. 25, no. 5, pp. 475–479, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Nishiguchi, T. Miwa, and F. Abe, “Pressure-adaptive differences in lactate dehydrogenases of three hagfishes: Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus,” Extremophiles, vol. 12, no. 3, pp. 477–480, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Nishiguchi and M. Okada, “Evolution of hagfish and human lactate dehydrogenases: a new view of human disease,” Journal of Medical Biochemistry, vol. 153, pp. 552–556, 2009. View at Google Scholar
  16. G. C. Johns and G. N. Somero, “Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of pacific damselfishes (Chromis spp.),” Molecular Biology and Evolution, vol. 21, no. 2, pp. 314–320, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. A. Brindley, R. W. Pickersgill, J. C. Partridge, D. J. Dunstan, D. M. Hunt, and M. J. Warren, “Enzyme sequence and its relationship to hyperbaric stability of artificial and natural fish lactate dehydrogenases,” Plos One, vol. 3, no. 4, Article ID e2042, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. Y. Nishiguchi, N. Ito, and M. Okada, “Structure and function of lactate dehydrogenase from hagfish,” Marine Drugs, vol. 8, no. 3, pp. 594–607, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Y. Nishiguchi, F. Abe, and M. Okada, “Different pressure resistance of lactate dehydrogenases from hagfish is dependent on habitat depth and caused by tetrameric structure dissociation,” Marine Biotechnology, vol. 12, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. H. Jiang, H. Yan, W. Xuan, D. Wuying, Y. Xinbing, and H. Xuchu, “Identification, expression, characterization, and immunolocalization of lactate dehydrogenase from Taenia asiatica,” Parasitology Research, vol. 104, no. 2, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. A. Wyckoff, J. Chow, T. R. Whitehead, and M. A. Cotta, “Cloning, sequence, and expression of the L-(+) lactate dehydrogenase of Streptococcus bovis,” Current Microbiology, vol. 34, no. 6, pp. 367–373, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. U. E. Loening, “The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis,” Biochemical Journal, vol. 102, no. 1, pp. 251–257, 1967. View at Google Scholar · View at Scopus