Table of Contents
ISRN Materials Science
Volume 2011, Article ID 857432, 5 pages
http://dx.doi.org/10.5402/2011/857432
Research Article

Crystal Structure of Locally Available Tassar Fibers Based on [ A l a - G l y ] 𝑛 Amino Acid Sequence: Using X-Ray Data and LALS Method

Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India

Received 12 April 2011; Accepted 9 May 2011

Academic Editors: M. Celino, Y. X. Gan, and Y. Sun

Copyright © 2011 Parameswara Puttanna and Somashekar Rudrappa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Reddy and Y. Yang, “Structure and properties of cocoons and silk fibers produced by Hyalophora cecropia,” Journal of Materials Science, vol. 45, no. 16, pp. 4414–4421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Maity, S. I. Goel, S. Roy et al., “Analysis of transcripts expressed in one-day-old larvae and fifth instar silk glands of tasar silkworm, antheraea mylitta,” Comparative and Functional Genomics, vol. 2010, article 246738, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. G. P. Singh, S. B. Zeya, A. K. Srivastava, B. Prakash, N. G. Ojha, and N. Suryanarayana, “Susceptibility of three eco-races of tropical tasar silkworm to Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV),” Caspian Journal of Environmental Sciences, vol. 6, no. 2, pp. 161–165, 2008. View at Google Scholar
  4. R. E. Marsh, R. B. Corey, and L. Pauling, “An investigation of the structure of silk fibroin,” Biochimica et Biophysica Acta, vol. 16, pp. 1–34, 1955. View at Google Scholar · View at Scopus
  5. F. Lucas and K. M. Rudall, in Comprehensive Biochemistry, M. Florkin and E. H. Stotz, Eds., vol. 26, p. 475, Elsevier, Amsterdam, The Netherlands, 1968.
  6. K. Okuyama, R. Somashekar, K. Noguchi, and S. Lchimura, “Refined molecular and crystal structure of silk I based on Ala-Gly and (Ala-Gly)2-Ser-Gly peptide sequence,” Biopolymers, vol. 59, no. 5, pp. 310–319, 2001. View at Google Scholar · View at Scopus
  7. Sangappa, S. S. Mahesh, and R. Somashekar, “Crystal structure of raw pure Mysore silk fibre based on (Ala-Gly)n-Ser-Gly peptide sequence using Linked-Atom-Least-Squares method,” Journal of Biosciences, vol. 30, no. 2, pp. 259–268, 2005. View at Google Scholar · View at Scopus
  8. S. S. Mahesh and R. Somashekar, “Crystal and molecular structures of raw bivoltine silk fibre—a comparative study,” Indian Journal of Fibre and Textile Research, vol. 32, no. 2, pp. 143–149, 2007. View at Google Scholar
  9. T. Reddy, S. Roy, Y. Prakash et al., “Stress-strain curves and corresponding structural parameters in mulberry and non-mulberry silk fibers,” Fibers and Polymer, vol. 12, no. 4, pp. 499–505, 2011. View at Google Scholar
  10. M. I. Ivanova and L. Makowski, “Iterative low-pass filtering for estimation of the background in fiber diffraction patterns,” Acta Crystallographica A, vol. 54, part 5, pp. 626–631, 1998. View at Publisher · View at Google Scholar
  11. J. Squire, H. Al-khayat, S. Arnott et al., “New CCP13 software and strategy behind further developments: stripping and modelling of fibre diffraction data,” Fibre Diffraction Review, vol. 11, pp. 7–19, 2003. View at Google Scholar
  12. K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, and K. Ogawa, “Molecular and crystal structure of hydrated chitosan,” Macromolecules, vol. 30, no. 19, pp. 5849–5855, 1997. View at Google Scholar · View at Scopus
  13. Y. Takahashi, M. Gehoh, and K. Yuzuriha, “Structure refinement and diffuse streak scattering of silk (Bombyx mori),” International Journal of Biological Macromolecules, vol. 24, no. 2-3, pp. 127–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. P. J. C. Smith and S. Arnott, “LALS: a linked-atom least-squares reciprocal-space refinement system incorporating stereochemical restraints to supplement sparse diffraction data,” Acta Crystallographica A, vol. 34, pp. 3–11, 1978. View at Publisher · View at Google Scholar
  15. L. Pauling and R. B. Corey, “The polypeptide-chain configuration in hbmoglobin and other globular proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 37, no. 5, pp. 282–285, 1951. View at Google Scholar
  16. L. Pauling and R. B. Corey, “Two pleated-sheet configurations of polypeptide chains involving both cis and trans amide groups,” Proceedings of the National Academy of Sciences of the United States of America, vol. 39, no. 4, pp. 247–252, 1953. View at Google Scholar