Table of Contents
ISRN Pathology
Volume 2011 (2011), Article ID 953803, 10 pages
http://dx.doi.org/10.5402/2011/953803
Research Article

Immunorecognition of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Some Normal and Malignant Tissues from Genitourinary System

1Department of Quality Control, Center of Molecular Immunology, 216 Street and 15 Avenue Atabey, Playa, P.O. Box 16040, 11600 Havana, Cuba
2Department of Cell Biology and Tissues Banking, National Institute of Oncology and Radiobiology, 29 and F Street Vedado, Plaza de la Revolución, 10400 Havana, Cuba
3Department of Pathology, Manuel Fajardo General Hospital, Zapata and D Street Vedado, Plaza de la Revolución, 10400 Havana, Cuba
4Research and Development Direction, Center of Molecular Immunology, 216 Street and 15 Avenue Atabey, Playa. P.O. Box 16040, 11600 Havana, Cuba

Received 18 July 2011; Accepted 10 August 2011

Academic Editors: A.-J. Kruse and T. Yazawa

Copyright © 2011 Rancés Blanco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Evans, “Follow-up surveillance strategies for genitourinary malignancies,” Cancer, vol. 94, no. 11, pp. 2892–2905, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2006,” Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Google Scholar
  3. K. L. Knutson, T. J. Curiel, L. Salazar, and M. L. Disis, “Immunologic principles and immunotherapeutic approaches in ovarian cancer,” Hematology/Oncology Clinics of North America, vol. 17, no. 4, pp. 1051–1073, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Palapattu and R. E. Reiter, “Monoclonal antibody therapy for genitourinary oncology: promise for the future,” Journal of Urology, vol. 168, no. 6, pp. 2615–2623, 2002. View at Google Scholar · View at Scopus
  5. Z. Dolićanin, L. Janković, and V. Katić, “Biomarkers for detection, treatment decision and prognosis of the urinary bladder cancer,” Medicine and Biology, vol. 14, no. 1, pp. 1–5, 2007. View at Google Scholar
  6. K. H. Hammerich, G. A. Ayala, and T. M. Wheeler, “Application of immunohistochemistry to the genitourinary system (prostate, urinary bladder, testis, and kidney),” Archives of Pathology and Laboratory Medicine, vol. 132, no. 3, pp. 432–440, 2008. View at Google Scholar · View at Scopus
  7. R. F. Irie and M. H. Ravindranath, “Gangliosides as target for monoclonal antibodies therapy of cancer,” in Therapeutic Monoclonal Antibodies, C. A. K. Borrebaeck and G. W. Larrick, Eds., pp. 75–94, M. Stockom Press, New York, NY, USA, 1990. View at Google Scholar
  8. T. Yamashita, R. Wada, T. Sasaki et al., “A vital role for glycosphingolipid synthesis during development and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9142–9147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Carr, A. Mullet, Z. Mazorra et al., “A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors,” Hybridoma, vol. 19, no. 3, pp. 241–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Birkle, G. Zeng, L. Gao, R. K. Yu, and J. Aubry, “Role of tumor-associated gangliosides in cancer progression,” Biochimie, vol. 85, no. 3-4, pp. 455–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Higashi, T. Sasabe, Y. Fukui, M. Maru, and S. Kato, “Detection of gangliosides as N-glycolylneuraminic acid-specific tumor-associated Hanganutziu-Deicher antigen in human retinoblastoma cells,” Japanese Journal of Cancer Research, vol. 79, no. 8, pp. 952–956, 1988. View at Google Scholar · View at Scopus
  12. M. Miyake, K. Hashimoto, M. Ito et al., “The abnormal occurrence and the differentiation-dependent distribution of N-acetyl and N-glycolyl species of the ganglioside GM2 in human germ cell tumors,” Cancer, vol. 65, no. 3, pp. 499–505, 1990. View at Google Scholar · View at Scopus
  13. A. M. Vazquez, M. Alfonso, B. Lanne et al., “Generation of a murine monoclonal antibody specific for N- glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids,” Hybridoma, vol. 14, no. 6, pp. 551–556, 1995. View at Google Scholar · View at Scopus
  14. A. M. Scursoni, L. Galluzzo, S. Camarero et al., “Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry,” Pediatric and Developmental Pathology, vol. 13, no. 1, pp. 18–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Blanco, E. Rengifo, M. Cedeño, C. E. Rengifo, D. F. Alonso, and A. Carr, “Immunoreactivity of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system,” ISRN Gastroenterology, vol. 2011, Article ID 645641, 8 pages, 2011. View at Google Scholar
  16. E. Dabelsteen, “Cell surface carbohydrates as prognostic markers in human carcinomas,” Journal of Pathology, vol. 179, no. 4, pp. 358–369, 1996. View at Google Scholar · View at Scopus
  17. W. Peng-Hui, “Altered sialylation and sialyltransferase expression in gynecologic cancers,” Journal of Cancer Molecules, vol. 2, no. 3, pp. 107–116, 2006. View at Google Scholar
  18. W. Schlenzka, L. Shaw, S. Kelm et al., “CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya,” FEBS Letters, vol. 385, no. 3, pp. 197–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Shaw and R. Schauer, “The biosynthesis of N-glycolylneuraminic acid occurs by hydroxylation of the CMP-glycoside of N-acetylneuraminic acid,” Biological Chemistry Hoppe-Seyler, vol. 369, no. 6, pp. 477–486, 1988. View at Google Scholar · View at Scopus
  20. T. Saida, S. Ikegawa, Y. Takizawa, and S. Kawachi, “Immunohistochemical detection of heterophile Hanganutziu-Deicher (HD) antigen in human malignant melanoma,” Archives of Dermatological Research, vol. 282, no. 3, pp. 179–182, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Van Cruijsen, M. Ruiz, P. Van der Valk, T. D. de Gruijl, and G. Giaccone, “Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer,” BMC Cancer, vol. 9, article 180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Blanco, E. Rengifo, C. E. Rengifo, M. Cedeño, M. Frómeta, and A. Carr, “Immunohistochemical reactivity of the 14F7 monoclonal antibody raised against N-glycolyl GM3 ganglioside in some benign and malignant skin neoplasms,” ISRN Dermatology, vol. 2011, Article ID 848909, 8 pages, 2011. View at Publisher · View at Google Scholar
  23. H. Higashi, M. Naiki, S. Matuo, and K. Okouchi, “Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid,” Biochemical and Biophysical Research Communications, vol. 79, no. 2, pp. 388–395, 1977. View at Google Scholar · View at Scopus
  24. Y. N. Malykh, R. Schauer, and L. Shaw, “N-Glycolylneuraminic acid in human tumours,” Biochimie, vol. 83, no. 7, pp. 623–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Tangvoranuntakul, P. Gagneux, S. Díaz et al., “Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12045–12050, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Oetke, S. Hinderlich, R. Brossmer, W. Reutter, M. Pawlita, and O. T. Keppler, “Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells,” European Journal of Biochemistry, vol. 268, no. 16, pp. 4553–4561, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, “Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4228–4237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Irie and A. Suzuki, “CMP-N-acetylneuraminic acid hydroxylase is exclusively inactive in humans,” Biochemical and Biophysical Research Communications, vol. 248, no. 2, pp. 330–333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Ikuta, Y. Nishi, Y. Simizu et al., “Hanganutziu-Deicher type heterophyle antigen-positive cells in human cancer tissues demonstrated by membrane immunofluorescence,” Biken Journal, vol. 25, no. 1, pp. 47–50, 1982. View at Google Scholar
  30. P. L. Devine, B. A. Clark, G. W. Birrell et al., “The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid,” Cancer Research, vol. 51, no. 21, pp. 5826–5836, 1991. View at Google Scholar · View at Scopus
  31. G. Marquina, H. Waki, L. E. Fernandez et al., “Gangliosides expressed in human breast cancer,” Cancer Research, vol. 56, no. 22, pp. 5165–5171, 1996. View at Google Scholar · View at Scopus
  32. J. P. Oliva, Z. Valdés, A. Casacó et al., “Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with 99mTc,” Breast Cancer Research and Treatment, vol. 96, no. 2, pp. 115–121, 2006. View at Google Scholar
  33. B. K. Gillard, R. G. Clement, and D. M. Marcus, “Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways,” Glycobiology, vol. 8, no. 9, pp. 885–890, 1998. View at Google Scholar · View at Scopus
  34. C. M. Gordon and K. O. Lloyd, “Endocytosis and recycling of gangliosides in a human melanoma cell line: inhibitory effect of brefeldin A and monensin,” Archives of Biochemistry and Biophysics, vol. 315, no. 2, pp. 339–344, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Schwars and A. H. Futerman, “Determination of the localization of gangliosides using anti-gangliosides antibodies: comparison of fixation methods,” Journal of Histochemistry and Cytochemistry, vol. 45, no. 4, pp. 611–618, 1997. View at Publisher · View at Google Scholar
  36. D. F. Alonso, M. R. Gabri, M. D. Guthmann, L. Fainboim, and D. E. Gomez, “A novel hydrophobized GM3 ganglioside/Neisseria meningitidis outer membrane protein complex vaccine induces tumor protection in B16 murine melanoma,” International Journal of Oncology, vol. 15, no. 1, pp. 59–66, 1999. View at Google Scholar
  37. M. Kamada, T. Mori, Y. Sakamoto et al., “Heterophile antigens in serous cystadenocarcinoma of the human ovary,” Asia-Oceania Journal of Obstetrics and Gynaecology, vol. 18, no. 4, pp. 387–395, 1992. View at Google Scholar · View at Scopus
  38. S. L. Diaz, V. Padler-Karavani, D. Ghaderi et al., “Sensitive and specific detection of the non-human sialic acid N-Glycolylneuraminic acid in human tissues and biotherapeutic products,” PLoS One, vol. 4, no. 1, article e4241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Hedlund, V. Padler-Karavani, N. M. Varki, and A. Varki, “Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 48, pp. 18936–18941, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Rekhi, T. S. Jaswal, and B. Arora, “Premalignant lesions of prostate and their association with nodular hyperplasia and carcinoma prostate,” Indian Journal of Cancer, vol. 41, no. 2, pp. 60–65, 2004. View at Google Scholar · View at Scopus
  41. C. B. Gilks and J. Prat, “Ovarian carcinoma pathology and genetics: recent advances,” Human Pathology, vol. 40, no. 9, pp. 1213–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus