Table of Contents
Retracted

This article has been retracted as it was found to contain a substantial amount of material from the article by Yermolaev, Y. I., and M. Y. Yermolaev (2008), Comment on “Interplanetary origin of intense geomagnetic storms (Dst < -100 nT) during solar cycle 23” by W. D. Gonzalez et al. Geophys. Res. Lett., 35, L01101, doi:10.1029/2007GL030281.

View the full Retraction here.

References

  1. B. Olufemi Adebesin, S. Oluwole Ikubanni, and J. Stephen Kayode, “On the geoeffectiveness structure of solar wind-magnetosphere coupling functions during intense storms,” ISRN Astronomy and Astrophysics, vol. 2011, Article ID 961757, 13 pages, 2011.
ISRN Astronomy and Astrophysics
Volume 2011, Article ID 961757, 13 pages
http://dx.doi.org/10.5402/2011/961757
Research Article

On the Geoeffectiveness Structure of Solar Wind-Magnetosphere Coupling Functions during Intense Storms

Space Weather Research Group, Department of Industrial Physics, College of Science & Engineering, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria

Received 28 September 2011; Accepted 10 November 2011

Academic Editors: G. Chernov and M. Ding

Copyright © 2011 B. Olufemi Adebesin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. D. Gonzalez, J. A. Joselyn, Y. Kamide et al., “What is a geomagnetic storm?” Journal of Geophysical Research, vol. A4, pp. 5771–5792, 1994. View at Google Scholar
  2. W. D. Gonzalez and B. T. Tsurutani, “Criteria of interplanetary parameters causing intense magnetic storms,” Planetary and Space Science, vol. 35, no. 9, pp. 1101–1109, 1987. View at Google Scholar · View at Scopus
  3. J. T. Gosling, D. J. McComas, J. L. Phillips, and S. J. Bame, “Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections,” Journal of Geophysical Research, vol. 69, pp. 7831–7839, 1991. View at Google Scholar
  4. G. Lu, T. E. Holzer, D. Lummerzheim et al., “Ionospheric response to the interplanetary magnetic field southward turning: fast onset and slow reconfiguration,” Journal of Geophysical Research A: Space Physics, vol. 107, no. 8, pp. 1153–1159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. D. Gonzalez, A. L. Clua de Gonzalez, J. H. A. Sobral, and L. E. Vieira, “Solar and Interplanetry causes of very intense storms,” Journal of Atmospheric and Terrestrial Physics, vol. 63, pp. 403–412, 2001. View at Google Scholar
  6. G. Rostoker, L. Lam, and W. D. Hume, “Response time of the magnetosphere to the interplanetary electric field,” Canadian Journal of Physics, vol. 50, p. 544, 1972. View at Google Scholar
  7. R. K. Burton, R. L. McPherron, and C. T. Russell, “An empirical relationship between interplanetary conditions and Dst,” Journal of Geophysical Research, vol. 80, article 4204, 1975. View at Google Scholar
  8. R. L. Arnoldy, “Signature in interplanetary medium for sub-storms,” Journal of Geophysical Research, vol. 76, p. 5189, 1971. View at Google Scholar
  9. B. T. Tsurutani and C. I. Meng, “Interplanetary magnetic field variations and substorm activity,” Journal of Geophysical Research, vol. 77, p. 2964, 1972. View at Google Scholar
  10. R. E. Holzer and J. A. Slavin, “An evaluation of three predictors of geomagnetic activity,” Journal of Geophysical Research, vol. 87, p. 2558, 1982. View at Google Scholar
  11. D. N. Baker, R. D. Zwickl, S. J. Bame et al., “Isee 3 high time resolution study of interplanetary parameter correlations with magnetospheric activity,” Journal of Geophysical Research, vol. 88, no. 8, pp. 6230–6242, 1983. View at Google Scholar · View at Scopus
  12. B. O. Adebesin, “Roles of interplanetary and geomagnetic parameters in “intense“ and “very intense“ magnetic storms generation and their geoeffectiveness,” Acta Geodaetica et Geophysica Hungarica, vol. 43, no. 4, pp. 383–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Taylor, M. Lester, and T. K. Yeoman, “A superposed epoch analysis of geomagnetic storms,” Annals of Geophysics, vol. 12, p. 612, 1994. View at Google Scholar
  14. B. T. Tsurutani, W. D. Gonzalez, F. Tang, S.-I. Akasofu, and E. J. Smith, “Origin of Interplanetary southward magnetic storms near solar maximum (1978–1979),” Journal of Geophysical Research, vol. 93, p. 8519, 1988. View at Google Scholar
  15. A. Dal Lago, L. E. A. Vieira, E. Echer et al., “Great geomagnetic storms in the rise and maximum of solar cycle 23,” Brazilian Journal of Physics, vol. 34, no. 4B, pp. 1542–1546, 2004. View at Google Scholar · View at Scopus
  16. P. Ballatore, “Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity,” Journal of Geophysical Research A: Space Physics, vol. 107, article 1227, 2002. View at Publisher · View at Google Scholar
  17. C. A. Loewe and G. W. Prolss, “Classification and mean behavior of magnetic storms,” Journal of Geophysical Research A: Space Physics, vol. 102, no. 7, pp. 14209–14213, 1997. View at Google Scholar · View at Scopus
  18. C. Y. Huang, W. J. Burke, and C. S. Lin, “Ion precipitation in the dawn sector during geomagnetic storms,” Journal of Geophysical Research A: Space Physics, vol. 110, no. 11, Article ID A11213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. E. A. Vieira, W. D. Gonzalez, A. J. Clua de Gonzalez, and A. Dal Lago, “A study of magnetic Storms development in two or more steps and its association with the polarity of magnetic cloud,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 63, no. 5, pp. 457–461, 2000. View at Google Scholar
  20. T. I. Pulkkinen, N. Partamies, K. E. J. Huttunen, G. D. Reeves, and H. E. J. Koskinen, “Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions,” Geophysical Research Letters, vol. 34, no. 2, Article ID L02105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. I. Yermolaev and M. Y. Yermolaev, “Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events,” Advances in Space Research, vol. 37, no. 6, pp. 1175–1181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Gosling and V. J. Pizzo, “Formation and evolution of corotating interaction regions and their three dimensional structure,” Space Science Reviews, vol. 89, no. 1-2, pp. 21–25, 1999. View at Google Scholar · View at Scopus
  23. W. D. Gonzalez, B. T. Tsurutani, and A. L. Clúa de Gonzalez, “Interplanetary origin of geomagnetic storms,” Space Science Reviews, vol. 88, no. 3-4, pp. 529–562, 1999. View at Google Scholar · View at Scopus
  24. V. Bothmer, “The solar and interplanetary causes of space storms in solar cycle 23,” IEEE Transactions on Plasma Science, vol. 32, no. 4 I, pp. 1411–1414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Gopalswamy, S. Yashiro, M. L. Kaiser, R. A. Howard, and J. L. Bougeret, “Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism?” Astrophysical Journal, vol. 548, no. 1, pp. L91–L94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. M. Wang, P. Z. Ye, and S. Wang, “Multiple magnetic clouds: several 21examples during March-April 2001,” Journal of Geophysical Research, vol. 108, no. A10, p. 1370, 2003. View at Publisher · View at Google Scholar
  27. N. Gopalswamy, S. Yashiro, G. Michalek, H. Xie, R. P. Lepping, and R. A. Howard, “Solar source of the largest geomagnetic storm of cycle 23,” Geophysical Research Letters, vol. 32, no. 12, pp. 1–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. I. S. Veselovsky, M. I. Panasyuk, S. I. Avdyushin et al., “Solar and heliospheric phenomena in October-November 2003: causes and consequences,” Kosmicheskie Issledovaniia, vol. 42, no. 5, p. 453, 2004 (Russian). View at Google Scholar
  29. Y. I. Yermolaev, L. M. Zelenyi, G. N. Zastenker et al., “A year later: solar, heliospheric, and magnetospheric disturbances in November 2004,” Geomagnetism and Aeronomy, vol. 45, no. 6, pp. 681–719, 2005. View at Google Scholar · View at Scopus
  30. C. J. Farrugia, H. Matsui, H. Kucharek et al., “Survey of intense Sun-Earth connection events (1995–2003),” Advances in Space Research, vol. 38, no. 3, pp. 498–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Xie, N. Gopalswamy, P. K. Manoharan, A. Lara, S. Yashiro, and S. Lepri, “Long-lived geomagnetic storms and coronal mass ejections,” Journal of Geophysical Research A: Space Physics, vol. 111, no. 1, Article ID A01103, 2006. View at Publisher · View at Google Scholar · View at Scopus