Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 102543, 12 pages
http://dx.doi.org/10.5402/2012/102543
Research Article

Gold-Nanoparticle Decorated Graphene-Nanostructured Polyaniline Nanocomposite-Based Bienzymatic Platform for Cholesterol Sensing

1Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida 201303, India
2Amity Institute of Nanotechnology, Amity University, Uttar Pradesh, Noida 201303, India
3Biomedical Instrumentation Section, Department of Science & Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India

Received 9 April 2012; Accepted 29 May 2012

Academic Editors: J. Sha and Y. Zhang

Copyright © 2012 Deepshikha Saini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj, “Graphene, the new nanocarbon,” Journal of Materials Chemistry, vol. 19, no. 17, pp. 2457–2469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. D. Stoller, S. Park, Z. Yanwu, J. An, and R. S. Ruoff, “Graphene-Based ultracapacitors,” Nano Letters, vol. 8, no. 10, pp. 3498–3502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge et al., “Electromechanical resonators from graphene sheets,” Science, vol. 315, no. 5811, pp. 490–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” Journal of the American Chemical Society, vol. 130, no. 33, pp. 10876–10877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Ang, W. Chen, A. T. S. Wee, and P. L. Kian, “Solution-gated epitaxial graphene as pH sensor,” Journal of the American Chemical Society, vol. 130, no. 44, pp. 14392–14393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Schedin, A. K. Geim, S. V. Morozov et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, vol. 6, no. 9, pp. 652–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. S. Novoselov, E. McCann, S. V. Morozov et al., “Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene,” Nature Physics, vol. 2, no. 3, pp. 177–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Kanghyun, J. P. Hyung, B. C. Woo, J. K. Kook, T. K. Gyu, and S. Y. Wan, “Electric property evolution of structurally defected multilayer grapheme,” Nano Letters, vol. 8, no. 10, pp. 3092–3096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically strong, electrically conductive, and biocompatible graphene paper,” Advanced Materials, vol. 20, no. 18, pp. 3557–3561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Segal, “Selling graphene by the ton,” Nature Nanotechnology, vol. 4, p. 612, 2009. View at Publisher · View at Google Scholar
  16. J. Janata and M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nature Materials, vol. 2, p. 19, 2002. View at Publisher · View at Google Scholar
  17. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Nanostructured Polyaniline Sensors,” Chemistry, vol. 10, no. 6, pp. 1314–1319, 2004. View at Google Scholar · View at Scopus
  18. J. Liu, Y. Lin, L. Liang et al., “Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures,” Chemistry, vol. 9, no. 3, pp. 604–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Dhand, S. K. Arya, S. P. Singh, B. P. Singh, M. Datta, and B. D. Malhotra, “Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route,” Carbon, vol. 46, no. 13, pp. 1727–1735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Nandi, R. Gangopadhyay, and A. Bhaumik, “Mesoporous polyaniline having high conductivity at room temperature,” Microporous and Mesoporous Materials, vol. 109, no. 1-3, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Deepshikha and T. Basu, Journal of Experimental Nanoscience. In press.
  22. Deepshikha and T. Basu, “A review on synthesis and characterization of nanostructured conducting polymers (NSCP) and application in biosensors,” Analytical Letters, vol. 44, no. 6, pp. 1126–1171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–1782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coordination Chemistry Reviews, vol. 249, no. 17-18, pp. 1870–1901, 2005. View at Google Scholar
  25. S. G. Penn, L. He, and M. J. Natan, “Nanoparticles for bioanalysis,” Current Opinion in Chemical Biology, vol. 7, pp. 609–615, 2003. View at Publisher · View at Google Scholar
  26. G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Applied Physics Letters, vol. 94, Article ID 083111, 2009. View at Google Scholar
  27. J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, “Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response,” ACS Nano, vol. 2, no. 9, pp. 1825–1832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Zhang, J. Zhang, F. Zhang et al., “Graphene oxide as a matrix for enzyme immobilization,” Langmuir, vol. 26, no. 9, pp. 6083–6085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Zhou, Y. Zhai, and S. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide,” Analytical Chemistry, vol. 81, p. 5603, 2009. View at Publisher · View at Google Scholar
  30. Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, “Biocompatible graphene oxide-based glucose biosensors,” Langmuir, vol. 26, no. 9, pp. 6158–6160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Du, Z. Zou, Y. Shin et al., “Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres,” Analytical Chemistry, vol. 82, no. 7, pp. 2989–2995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, “Nitrogen-doped graphene and its application in electrochemical biosensing,” ACS Nano, vol. 4, no. 4, pp. 1790–1798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis, vol. 22, no. 10, pp. 1027–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Myung, A. Solanki, C. Kim, J. Park, K. S. Kim, and K. B. Lee, “Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers,” Advanced Materials, vol. 23, no. 19, pp. 2221–2225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Norouzi, H. Ganjali, B. Larijani, M. R. Ganjali, F. Faridbod, and H. A. Zamani, “A glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry,” International Journal of Electrochemical Science, vol. 6, p. 5189, 2011. View at Google Scholar
  36. R. S. Dey and C. R. Raj, “Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material,” Journal of Physical Chemistry C, vol. 114, no. 49, pp. 21427–21433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, “Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors,” Biosensors and Bioelectronics, vol. 21, p. 1125, 2006. View at Publisher · View at Google Scholar
  38. T. Kuila, T. S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosensors and Bioelectronics, vol. 15, pp. 4637–4648, 2011. View at Google Scholar
  39. R. Antiochia and L. Gorton, “Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages,” Biosensors and Bioelectronics, vol. 22, no. 11, pp. 2611–2617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Liu, J. Yu, and H. Ju, “Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode,” Journal of Electroanalytical Chemistry, vol. 540, p. 61, 2003. View at Publisher · View at Google Scholar
  41. J. Chen, J. Tang, F. Yan, and H. Ju, “A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay,” Biomaterials, vol. 27, no. 10, pp. 2313–2321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Deepshikha and T. Basu, “Synthesis and characterization of nanocomposites based on polyaniline-gold/graphene nanosheets,” Applied Nanoscience. In press. View at Publisher · View at Google Scholar
  43. X. Wu, S. Qi, J. He, B. Chen, and G. Duan, “Synthesis of high conductivity Polyaniline/Ag/graphite nanosheet composites via ultrasonic technique,” Journal of Polymer Research, vol. 17, p. 751, 2010. View at Publisher · View at Google Scholar
  44. S. S. J. Aravind, T. T. Baby, T. Arockiadoss, R. B. Rakhi, and S. Ramaprabhu, “A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets,” Thin Solid Films, vol. 519, no. 16, pp. 5667–5672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Wisitsoraat, P. Sritongkham, C. Karuwan, D. Phokharatkul, T. Maturos, and A. Tuantranont, “Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor,” Biosensors and Bioelectronics, vol. 26, no. 4, pp. 1514–1520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Singh, P. R. Solanki, T. Basu, and B. D. Malhotra, “Polypyrrole/multiwalled carbon nanotubes-based biosensor for cholesterol estimation,” Polymers for Advanced Technologies, vol. 23, no. 7, pp. 1084–1091, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Singh, T. Basu, P. R. Solanki, and B. D. Malhotra, “Poly (pyrrole-co-N-methyl pyrrole) for application to cholesterol sensor,” Journal of Materials Science, vol. 44, no. 4, pp. 954–961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. R. Solanki, S. K. Arya, S. P. Singh, M. K. Pandey, and B. D. Malhotra, “Application of electrochemically prepared poly-N-methylpyrrole-p-toluene sulphonate films to cholesterol biosensor,” Sensors and Actuators B, vol. 123, no. 2, pp. 829–839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Deepshikha and T. Basu, “Synthesis, characterization and application of nanostructured conducting polyaniline to biosensing,” Journal of Bionanoscience, vol. 4, pp. 38–44, 2010. View at Publisher · View at Google Scholar
  50. K. Singh, B. P. Singh, R. Chauhan, and T. Basu, “Fabrication of amperometric bienzymatic glucose biosensor based on MWCNT tube and polypyrrole multilayered nanocomposite,” Journal of Applied Polymer Science, vol. 125, supplement 1, pp. E235–E246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Kaushik, P. R. Solanki, K. Kaneto, C. G. Kim, S. Ahmad, and B. D. Malhotra, “Nanostructured iron oxide platform for impedimetric cholesterol detection,” Electroanalysis, vol. 22, no. 10, pp. 1045–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. P. R. Solanki, A. Kaushik, A. A. Ansari, A. Tiwari, and B. D. Malhotra, “Multi-walled carbon nanotubes/sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor,” Sensors and Actuators B, vol. 137, no. 2, pp. 727–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Dhand, M. Das, G. Sumana et al., “Preparation, characterization and application of polyaniline nanospheres to biosensing,” Nanoscale, vol. 2, no. 5, pp. 747–754, 2010. View at Publisher · View at Google Scholar · View at Scopus