Abstract

We study weak convergence of product of sums of stationary sequences of associated random variables to the log-normal law. The almost sure version of this result is also presented. The obtained theorems extend and generalize some of the results known so far for independent or associated random variables.

1. Introduction

In this paper, we consider sequences (𝑋𝑛)π‘›βˆˆβ„• of random variables (r.v.) defined on some probability space (Ξ©,𝔉,𝑃), which are identically distributed but not necessarily independent. Let us assume that the r.v. are positive, square integrable and introduce the following notation 𝐸𝑋1=πœ‡, Var(𝑋1)=𝜎2>0 and denote by 𝛾=𝜎/πœ‡ the coefficient of variation, further let 𝑆𝑛=βˆ‘π‘›π‘˜=1π‘‹π‘˜. The first result concerning the asymptotic behavior of the products of partial sums of independent and identically distributed (i.i.d.) r.v. was obtained in 2002 by RempaΕ‚a and WesoΕ‚owski (see [1]), who proved thatξ‚΅βˆπ‘›π‘–=1𝑆𝑖𝑛!πœ‡π‘›ξ‚Άβˆš1/π›Ύπ‘›π‘‘βŸΆπ‘’βˆš2𝒩,asπ‘›βŸΆβˆž,(1.1) where 𝒩 is a standard normal variable, and 𝑑→ stands for the convergence in distribution.

Recently, this result was extended in different ways, we refer the reader to [2, 3], where further references are given. In particular Gonchigdanzan and RempaΕ‚a (see [2]) studied the almost sure version of (1.1) and proved that for a sequence of i.i.d. r.v., we havelimπ‘›β†’βˆž1logπ‘›π‘›ξ“π‘˜=11π‘˜πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘˜π‘—=1π‘†π‘—π‘˜!πœ‡π‘˜ξƒͺ√1/(π›Ύπ‘˜)⎀βŽ₯βŽ₯βŽ¦β‰€π‘₯=𝐹(π‘₯),(1.2) almost surely (a.s.), for all π‘₯β‰₯0. Here and in the sequel, 𝐈(β‹…) is an indicator, and 𝐹(π‘₯) is the distribution function of the log-normal random variable √exp(2𝒩).

Li and Wang (see [3]) extended the convergence in (1.2) to the case of associated r.v. Let us recall the notion of association introduced by Esary et al. in [4]. (𝑋𝑛)π‘›βˆˆβ„• is a sequence of associated r.v., if for every finite subcollection 𝑋𝑖1,…,𝑋𝑖𝑛 and any coordinatewise nondecreasing functions 𝑓,π‘”βˆΆβ„π‘›β†’β„ξ€·π‘“ξ€·π‘‹Cov𝑖1,…,𝑋𝑖𝑛𝑋,𝑔𝑖1,…,𝑋𝑖𝑛β‰₯0,(1.3) whenever this covariance exists. We will also use the notion of positively quadrant-dependent r.v. according to Lehmann (see [5]). The random variables 𝑋, π‘Œ are said to be positively quadrant dependent (PQD) if𝑃(𝑋≀π‘₯,π‘Œβ‰€π‘¦)β‰₯𝑃(𝑋≀π‘₯)𝑃(π‘Œβ‰€π‘¦),(1.4) for all π‘₯,π‘¦βˆˆβ„. We refer the reader to the monograph [6] of Bulinski and Shashkin as the survey on association. Let us only mention that associated r.v. are pairwise PQD, independent r.v. are associated, and associated and uncorrelated r.v. are independent. Moreover, nondecreasing functions of independent r.v. and nonnegatively correlated Gaussian r.v. are associated. Associated and PQD r.v. are examples of the so-called positively dependent r.v. They are nonnegatively correlated, and in view of the properties, the covariance is often used as a measure of their dependence.

The motivation for the study of the convergence in (1.1) goes back to the paper of Arnold and VillaseΓ±or (see [7]), who considered the limiting properties of sums of record values. The convergence in (1.1) may be also used, for example, to construct the distribution-free tests for the coefficient of variation 𝛾. On the other hand, associated r.v. play very important role in mathematical physics and statistics, and there is a lot of papers devoted to limit theorems under this kind of dependence (see [6, 8, 9]).

The aim of our paper is to generalize the results of [1, 2] by proving (1.1) and (1.2) for strictly stationary sequences of associated r.v. We also relax the condition on the rate of decay of the covariance coefficients imposed in [3].

2. Main Results

Let us state the first of our main results. In the following theorem, we generalize the main result of [1]. We shall consider sequences of associated r.v. instead of independent r.v.

Theorem 2.1. Let (𝑋𝑛)π‘›βˆˆβ„• be a strictly stationary sequence of positive and square-integrable associated r.v. Assume that 0<𝜎21∢=𝜎2+2βˆžξ“π‘˜=1𝑋Cov1,π‘‹π‘˜+1ξ€Έ<∞.(2.1) Then, ξ‚΅βˆπ‘›π‘˜=1π‘†π‘˜π‘›!πœ‡π‘›ξ‚Ά1/𝛾1βˆšπ‘›π‘‘βŸΆπ‘’βˆš2𝒩,asπ‘›βŸΆβˆž,(2.2) where 𝛾1=𝜎1/πœ‡.

Remark 2.2. Let us note that i.i.d. sequences are trivial examples of stationary associated sequences satisfying (2.1). Therefore, the above theorem is a generalization of the main result in [1]. Furthermore, our proof simplifies the original one by employing the Marcinkiewicz-Zygmund-type theorem. As a nontrivial example of associated r.v. satisfying our assumptions, one can take a stationary sequence of Gaussian r.v. with covariance structure such that (2.1) holds. Other examples may be constructed, for example, as the moving averages of i.i.d. r.v. with positive coefficients.

In the next theorem, we present the almost sure version of the limiting result obtained in Theorem 2.1. Our results generalize the ones obtained in [2, 3].

Theorem 2.3. Assume that the conditions of Theorem 2.1 are satisfied, then, limπ‘›β†’βˆžsupπ‘₯β‰₯0||||||1log𝑛𝑛𝑖=11π‘–πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯⎦||||||≀π‘₯βˆ’πΉ(π‘₯)=0a.s.,(2.3) where (2.3) 𝐹(π‘₯) denotes the distribution of the random variable (2.3) √exp(2𝒩).

Remark 2.4. Our Theorem 2.3 generalizes the result of [2], where i.i.d. r.v. were considered. It is also more general than the main result of [3], where a stronger and technical condition 𝑋Cov1,𝑋𝑛+1𝑛=π‘‚βˆ’1(log𝑛)βˆ’2βˆ’πœ€ξ€Έ,forsomeπœ€>0(2.4) was imposed. Our assumption (2.1) on the summability of covariances is natural and was used previously in the literature (see, e.g., [9]). Let us also mention that the method used in the proof is different than in [2, 3].

3. Auxiliary Lemmas and Proofs of the Main Results

In order to prove Theorem 2.1, we need four lemmas. For the first one, let us introduce the following notation, which will be also used in the sequel. Let us denote by 𝜎2𝑛 the variance of the sum βˆ‘π‘›π‘˜=1((π‘†π‘˜βˆ’π‘˜πœ‡)/π‘˜), then,𝜎2𝑛=Varπ‘›ξ“π‘˜=1π‘π‘˜,π‘›ξ€·π‘‹π‘˜ξ€Έξƒͺξƒ©βˆ’πœ‡=Varπ‘›ξ“π‘˜=1π‘π‘˜,π‘›π‘‹π‘˜ξƒͺ,(3.1) where π‘π‘˜,𝑛=βˆ‘π‘›π‘–=π‘˜(1/𝑖).

The first lemma describes the asymptotic behavior of the variance 𝜎2𝑛.

Lemma 3.1. Assume that the conditions of Theorem 2.1 are satisfied, then, limπ‘›β†’βˆžπœŽ2𝑛2𝑛=𝜎21=𝜎2+2βˆžξ“π‘˜=1𝑋Cov1,π‘‹π‘˜+1ξ€Έ.(3.2)

Proof. Let us observe that, by stationarity, we have 𝜎2𝑛=βˆ‘2π‘›π‘›π‘˜=1𝑏2π‘˜,𝑛𝑋Varπ‘˜ξ€Έ+2βˆ‘2π‘›π‘›βˆ’1π‘˜=1π‘“π‘˜,𝑛𝑋Cov1,π‘‹π‘˜+1ξ€Έ2𝑛,(3.3) where π‘“π‘˜,𝑛=𝑏1,𝑛𝑏1+π‘˜,𝑛+𝑏2,𝑛𝑏2+π‘˜,𝑛+β‹―+π‘π‘›βˆ’π‘˜,𝑛𝑏𝑛,𝑛=π‘›βˆ’π‘˜ξ“π‘—=1𝑏𝑗,𝑛𝑏𝑗+π‘˜,𝑛.(3.4) For π‘˜βˆˆβ„•, let us put π‘”π‘˜=βˆ‘βˆžπ‘–=π‘˜Cov(𝑋1,𝑋𝑖+1), then π‘”π‘˜+1βˆ’π‘”π‘˜=βˆ’Cov(𝑋1,π‘‹π‘˜+1). In order to calculate the second summand in (3.3), we shall apply the summation by parts formula π‘›βˆ’1ξ“π‘˜=1π‘“π‘˜,π‘›ξ€·π‘”π‘˜+1βˆ’π‘”π‘˜ξ€Έ=ξ€·π‘”π‘›π‘“π‘›βˆ’1,π‘›βˆ’π‘“1,𝑛𝑔1ξ€Έβˆ’π‘›βˆ’2ξ“π‘˜=1π‘”π‘˜+1ξ€·π‘“π‘˜+1,π‘›βˆ’π‘“π‘˜,𝑛.(3.5)
Thus, in our case, π‘›βˆ’1ξ“π‘˜=1π‘“π‘˜,𝑛𝑋Cov1,π‘‹π‘˜+1ξ€Έ=𝑓1,𝑛𝑔1βˆ’π‘”π‘›π‘“π‘›βˆ’1,𝑛+π‘›βˆ’2ξ“π‘˜=1π‘”π‘˜+1ξ€·π‘“π‘˜+1,π‘›βˆ’π‘“π‘˜,𝑛.(3.6) Applying the identity 𝑛𝑗=1𝑏2𝑗,𝑛=2π‘›βˆ’π‘1,𝑛(3.7) (see formula (4) in [1]), we get 𝑓1,𝑛=π‘›βˆ’1𝑗=1𝑏𝑗,𝑛𝑏𝑗+1,𝑛=π‘›βˆ’1𝑗=1𝑏𝑗,𝑛𝑏𝑗,π‘›βˆ’1𝑗=π‘›βˆ’1𝑗=1𝑏2𝑗,π‘›βˆ’π‘›βˆ’1𝑗=1𝑏𝑗,𝑛1𝑗=2π‘›βˆ’π‘1,π‘›βˆ’1𝑛2βˆ’π‘›βˆ’1𝑗=1𝑏𝑗,𝑛1𝑗.(3.8)
Thus, taking into account that π‘“π‘›βˆ’1,𝑛=𝑏1,𝑛𝑏𝑛,𝑛, the formula (3.3) takes the following form: 𝜎2𝑛=𝜎2𝑛2βˆ‘π‘›π‘˜=1𝑏2π‘˜,𝑛+2𝑓2𝑛1,𝑛𝑔1βˆ’π‘”π‘›π‘“π‘›βˆ’1,𝑛+βˆ‘π‘›βˆ’2π‘˜=1π‘”π‘˜+1ξ€·π‘“π‘˜+1,π‘›βˆ’π‘“π‘˜,𝑛2𝑛=𝜎2ξ‚΅2π‘›βˆ’π‘1,𝑛+2𝑛2π‘›βˆ’π‘1,π‘›βˆ’ξ€·1/𝑛2ξ€Έβˆ’βˆ‘π‘›βˆ’1𝑗=1𝑏𝑗,𝑛(1/𝑗)π‘›βˆžξ“π‘˜=1𝑋Cov1,π‘‹π‘˜+1ξ€Έβˆ’βˆ‘βˆžπ‘–=𝑛𝑋Cov1,𝑋𝑖+1𝑏1,𝑛𝑏𝑛,π‘›π‘›βˆ’π‘“1,π‘›βˆ’π‘“π‘›βˆ’1,π‘›π‘›π‘›βˆ’2ξ“π‘˜=1π‘”π‘˜+1π‘π‘˜,π‘›βˆ’2,(3.9) where π‘π‘˜,π‘›βˆ’2, for π‘˜=1,2,…,π‘›βˆ’2 are defined as follows: π‘π‘˜,π‘›βˆ’2=π‘“π‘˜,π‘›βˆ’π‘“π‘˜+1,π‘›βˆ‘π‘›βˆ’2π‘˜=1ξ€·π‘“π‘˜,π‘›βˆ’π‘“π‘˜+1,𝑛=π‘“π‘˜,π‘›βˆ’π‘“π‘˜+1,𝑛𝑓1,π‘›βˆ’π‘“π‘›βˆ’1,𝑛.(3.10) On account that π‘“π‘˜,𝑛>π‘“π‘˜+1,𝑛, we have π‘π‘˜,π‘›βˆ’2>0. Furthermore, βˆ‘π‘›βˆ’2π‘˜=1π‘π‘˜,π‘›βˆ’2=1. We shall prove that π‘π‘˜,π‘›βˆ’2β†’0, as π‘›β†’βˆž, for every π‘˜βˆˆβ„•. At first, let us note that 0<π‘“π‘˜,π‘›βˆ’π‘“π‘˜+1,𝑛=π‘›βˆ’π‘˜ξ“π‘—=1𝑏𝑗,𝑛𝑏𝑗+π‘˜,π‘›βˆ’(π‘›βˆ’π‘˜)βˆ’1𝑗=1𝑏𝑗,𝑛𝑏𝑗+π‘˜+1,𝑛=π‘π‘›βˆ’π‘˜,𝑛𝑏𝑛,𝑛+(π‘›βˆ’π‘˜)βˆ’1𝑗=1𝑏𝑗,𝑛1𝑗+π‘˜=π‘π‘›βˆ’π‘˜,𝑛𝑏𝑛,𝑛+(π‘›βˆ’π‘˜)βˆ’1𝑛𝑗=1𝑖=𝑗1𝑖1𝑗+π‘˜<𝑏1,𝑛𝑏𝑛,𝑛+𝑛𝑛𝑗=1𝑖=11𝑖1𝑗=𝑏1,𝑛𝑏𝑛,𝑛+𝑏1,𝑛2<2(1+log𝑛)2,(3.11) by the inequality 𝑏1,π‘›βˆ’log𝑛<1. On the other hand, we have 𝑓1,π‘›βˆ’π‘“π‘›βˆ’1,𝑛=π‘›βˆ’1𝑗=1𝑏𝑗,𝑛𝑏𝑗+1,π‘›βˆ’π‘1,𝑛𝑏𝑛,𝑛=π‘›βˆ’1𝑗=1𝑏𝑗,𝑛𝑏𝑗,π‘›βˆ’1π‘—ξ‚Άβˆ’π‘1,𝑛𝑏𝑛,𝑛=𝑛𝑗=1𝑏2𝑗,π‘›βˆ’π‘2𝑛,π‘›βˆ’π‘›βˆ’1𝑗=1𝑏𝑗,𝑛1π‘—βˆ’π‘1,𝑛𝑏𝑛,𝑛=2π‘›βˆ’π‘1,π‘›βˆ’1𝑛2βˆ’π‘›βˆ’1𝑗=1𝑏𝑗,𝑛1π‘—βˆ’π‘1,𝑛1𝑛>2π‘›βˆ’(2+log𝑛)2>𝑛,(3.12) for sufficiently large 𝑛 (𝑛β‰₯29). Therefore, from (3.11) and (3.12), we get π‘π‘˜,π‘›βˆ’2≀2(1+log𝑛)2π‘›βŸΆ0,(3.13) for each π‘˜βˆˆβ„•. From the Toeplitz theorem on the transformation of sequences into sequences (Problem  2.3.1 in [10]), we obtain π‘›βˆ’2ξ“π‘˜=1π‘”π‘˜+1π‘π‘˜,π‘›βˆ’2⟢0,(3.14) since π‘”π‘˜+1β†’0. It is easy to see that 0<𝑓1,π‘›βˆ’π‘“π‘›βˆ’1,𝑛<βˆ‘π‘›π‘—=1𝑏2𝑗,𝑛<2𝑛.
Thus, we see that from (3.9) the conclusion follows.

In the following lemma let us recall Theorem 2.3from [11], which will be one of the tools needed in the sequel.

Lemma 3.2. Let {π‘Žπ‘›,π‘˜;π‘›βˆˆβ„•,1β‰€π‘˜β‰€π‘›} be a triangular array of real numbers satisfying supπ‘›π‘›βˆˆβ„•ξ“π‘˜=1π‘Ž2𝑛,π‘˜<∞,limπ‘›β†’βˆžmax1β‰€π‘˜β‰€π‘›||π‘Žπ‘›,π‘˜||=0.(3.15) Let (π‘Œπ‘›)π‘›βˆˆβ„• be a sequence of centered, square-integrable associated r.v. such that the family {π‘Œ2𝑛;π‘›βˆˆβ„•} is uniformly integrable and Varπ‘›ξ“π‘˜=1π‘Žπ‘›,π‘˜π‘Œπ‘˜ξƒͺ=1.(3.16)
If furthermore βˆ‘π‘—βˆΆ|π‘˜βˆ’π‘—|β‰₯𝑛Cov(π‘Œπ‘˜,π‘Œπ‘—)β†’0, uniformly in π‘˜βˆˆβ„•, as π‘›β†’βˆž, then βˆ‘π‘›π‘˜=1π‘Žπ‘›,π‘˜π‘Œπ‘˜π‘‘β†’π’©, as π‘›β†’βˆž.

In the next lemma, we state the central limit theorem for sums of associated r.v. The proof particularly relies on Lemmas 3.1 and 3.2.

Lemma 3.3. Assume that the conditions of Theorem 2.1 are satisfied, then 1√2π‘›πœŽ1π‘›ξ“π‘˜=1π‘†π‘˜βˆ’π‘˜πœ‡π‘˜=1√2π‘›πœŽ1π‘›ξ“π‘˜=1π‘π‘˜,π‘›ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡π‘‘βŸΆπ’©,asπ‘›βŸΆβˆž.(3.17)

Proof. We apply Lemma 3.2 to the sequence π‘Œπ‘˜=π‘‹π‘˜βˆ’πœ‡ with π‘Žπ‘›,π‘˜=π‘π‘˜,𝑛/πœŽπ‘›. Let us check the assumptions. Obviously the family {π‘Œ2𝑛;π‘›βˆˆβ„•} is uniformly integrable. It is easy to see that by Lemma 3.1π‘›ξ“π‘˜=1π‘Ž2𝑛,π‘˜=βˆ‘π‘›π‘˜=1𝑏2π‘˜,π‘›πœŽ2𝑛=2π‘›βˆ’π‘1,𝑛2𝑛2π‘›πœŽ2π‘›βŸΆ1𝜎21,asπ‘›βŸΆβˆž,(3.18) thus, supπ‘›βˆˆβ„•βˆ‘π‘›π‘˜=1π‘Ž2𝑛,π‘˜<∞. Further we have max1β‰€π‘˜β‰€π‘›|π‘Žπ‘›π‘˜|=𝑏1,𝑛/πœŽπ‘›βˆšβ‰€(1+log𝑛)/𝑐𝑛→0. Obviously βˆ‘Var(π‘›π‘˜=1π‘Žπ‘›,π‘˜π‘Œπ‘˜)=1, thus, 1πœŽπ‘›π‘›ξ“π‘˜=1π‘π‘˜,π‘›ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡π‘‘1βŸΆπ’©,√2π‘›πœŽ1π‘›ξ“π‘˜=1π‘π‘˜,π‘›ξ€·π‘‹π‘˜ξ€Έ=1βˆ’πœ‡βˆš2π‘›πœŽ1πœŽπ‘›1πœŽπ‘›π‘›ξ“π‘˜=1π‘π‘˜,π‘›ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡π‘‘βŸΆπ’©,(3.19) since we have ξ”πœŽ2𝑛/2π‘›πœŽ21β†’1,asπ‘›β†’βˆž.

We shall also need the following strong law of large numbers of the Marcinkiewicz-Zygmund type.

Lemma 3.4. Let (𝑋𝑛)π‘›βˆˆβ„• be a strictly stationary sequence of square-integrable associated r.v. If βˆ‘βˆžπ‘—=2Cov(𝑋1,𝑋𝑗)<∞, then for every π‘βˆˆ(0,2), one has 1𝑛𝑛1/π‘ξ“π‘˜=1ξ€·π‘‹π‘˜βˆ’πΈπ‘‹π‘˜ξ€ΈβŸΆ0,almostsurely,asπ‘›βŸΆβˆž.(3.20)

Proof. We directly apply Theorem  3.3 in [12]. This result states that if (𝑏𝑛)π‘›βˆˆβ„• is a nondecreasing sequence of positive real numbers and (𝑋𝑛)π‘›βˆˆβ„• is a sequence of associated r.v. with βˆžξ“π‘—=1𝑋Var𝑗𝑏2𝑗+βˆžξ“π‘—β‰ π‘˜ξ€·π‘‹Cov𝑗,π‘‹π‘˜ξ€Έπ‘π‘—π‘π‘˜<∞,(3.21) then, π‘π‘›βˆ’1βˆ‘π‘›π‘—=1(π‘‹π‘—βˆ’πΈπ‘‹π‘—)β†’0 almost surely, as π‘›β†’βˆž.

Proof of Theorem 2.1. After taking the logarithm it suffices to show that 1𝐿∢=𝛾1√2π‘›π‘›ξ“π‘˜=1𝑆logπ‘˜ξ‚Άπ‘˜πœ‡π‘‘βŸΆπ’©.(3.22) We shall use the expansion of the logarithm log(1+π‘₯)=π‘₯βˆ’(π‘₯2/2(1+πœƒπ‘₯)2), where πœƒβˆˆ(0,1) depends on π‘₯>βˆ’1. We have 1𝐿=𝛾1√2π‘›π‘›ξ“π‘˜=1π‘†π‘˜βˆ’π‘˜πœ‡βˆ’1π‘˜πœ‡π›Ύ1√2π‘›π‘›ξ“π‘˜=1π‘†ξ€·ξ€·π‘˜ξ€Έξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡22ξ€·1+πœƒπ‘˜π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡ξ€Έξ€Έ2,(3.23) where πœƒπ‘˜ are random variables taking values in (0,1). The first term in (3.23) converges weakly to the standard normal law by Lemma 3.3. We shall prove that the second one converges almost surely to 0. By Lemma 3.4 with 𝑝=4/3, we get (π‘†π‘˜βˆ’π‘˜πœ‡)/π‘˜3/4)β†’0,almostsurelyasπ‘˜β†’βˆž, consequently (π‘†π‘˜βˆ’π‘˜πœ‡)/π‘˜β†’0 almost surely, as π‘˜β†’βˆž. Therefore, π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜3/4ξ€Έ2ξ€·1+πœƒπ‘˜π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡ξ€Έξ€Έ2⟢0,almostsurely,asπ‘˜β†’βˆž.(3.24) The weighted average with weights √1/π‘˜ is also convergent to 0, accordingly 1𝛾1√2π‘›π‘›ξ“π‘˜=1π‘†ξ€·ξ€·π‘˜ξ€Έξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡2ξ€·1+πœƒπ‘˜π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡ξ€Έξ€Έ2=1𝛾1√2π‘›π‘›ξ“π‘˜=11βˆšπ‘˜π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜3/4πœ‡ξ€Έ2ξ€·1+πœƒπ‘˜π‘†ξ€·ξ€·π‘˜ξ€Έβˆ’π‘˜πœ‡/π‘˜πœ‡ξ€Έξ€Έ2⟢0,(3.25) almost surely, as π‘›β†’βˆž, and the proof is completed.

In the proof of Theorem 2.3, we shall use the following inequality concerning indicators. The proof is immediate.

Lemma 3.5. For any random variables 𝑋, π‘Œ and real numbers π‘‘βˆˆβ„, π‘Ž>0, the following inequalities hold: 𝐈[][]ξ€Ί||π‘Œ||ξ€»,𝐈[][]ξ€Ί||π‘Œ||ξ€».𝑋+π‘Œβ‰€π‘‘β‰€πˆπ‘‹β‰€π‘‘+π‘Ž+𝐈>π‘Žπ‘‹+π‘Œβ‰€π‘‘β‰₯πˆπ‘‹β‰€π‘‘βˆ’π‘Žβˆ’πˆ>π‘Ž(3.26) The proof of Theorem 2.3 is based on Theorem  1 in [8], let us state it here as a lemma.

Lemma 3.6. Let (π‘Žπ‘›)π‘›βˆˆβ„• be a sequence of positive numbers, one puts 𝑏𝑛=βˆ‘π‘›π‘˜=1π‘Žπ‘˜, and assume that π‘Žπ‘›/𝑏𝑛→0,π‘π‘›β†’βˆž as π‘›β†’βˆž. Let (π‘Œπ‘›)π‘›βˆˆβ„• be a sequence of pairwise PQD r.v. with distribution functions 𝐹𝑛(π‘₯), respectively. Suppose that 𝐹𝑛𝑑→𝐹, where 𝐹 is a continuous distribution function, and βˆžξ“π‘—π‘—=1𝑖=1π‘Žπ‘–π‘Žπ‘—ξ€·π‘ŒCov𝑖,π‘Œπ‘—ξ€Έπ‘2𝑗<∞.(3.27) Then, supβˆ’βˆž<π‘₯<∞|||||1𝑏𝑛𝑛𝑖=1π‘Žπ‘–πˆξ€Ίπ‘Œπ‘–ξ€»|||||≀π‘₯βˆ’πΉ(π‘₯)⟢0a.s.,asπ‘›βŸΆβˆž.(3.28)

Proof of Theorem 2.3. Let πœ€>0 be fixed. We put πΆπ‘˜=π‘†π‘˜/π‘˜πœ‡ and logπ‘₯=𝑑. By using the expansion of the logarithm and Lemma 3.5, we get πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯βŽ¦ξƒ¬1≀π‘₯=πˆπ›Ύ1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έβˆ’1+𝑅𝑖1β‰€π‘‘β‰€πˆπ›Ύ1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έξƒ­ξ€Ί||π‘…βˆ’1≀𝑑+πœ€+πˆπ‘–||ξ€»,πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆ>πœ€π‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯βŽ¦ξƒ¬1≀π‘₯β‰₯πˆπ›Ύ1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έξƒ­ξ€Ί||π‘…βˆ’1β‰€π‘‘βˆ’πœ€βˆ’πˆπ‘–||ξ€»,>πœ€(3.29) where 𝑅𝑖=(βˆ’1/𝛾1βˆšβˆ‘π‘–)π‘–π‘˜=1((πΆπ‘˜βˆ’1)2/2(1+πœƒπ‘˜(πΆπ‘˜βˆ’1))2). As in the proof of Theorem 2.1, we see that 𝑅𝑖→0 almost surely, as π‘–β†’βˆž. Thus, for almost every πœ”βˆˆΞ© there exists 𝑖0(πœ”) such that for 𝑖β‰₯𝑖0 we have |𝑅𝑖(πœ”)|<πœ€, therefore, πˆξ€Ί||𝑅𝑖||ξ€»(πœ”)>πœ€βŸΆ0,π‘–βŸΆβˆž,(3.30) for almost every πœ”. Now, we shall apply Lemma 3.6 to the sequence π‘Œπ‘–=1𝛾1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έβˆ’1,(3.31) and weights π‘Žπ‘–=1/𝑖 and 𝑏𝑛=log𝑛. The r.v. π‘Œπ‘– are not only PQD but associated as well, as sums of the r.v. πΆπ‘˜βˆ’1 which are associated. By Lemma 3.3, we have 1𝛾1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έβˆ’1π‘‘βŸΆβˆš2𝒩,asπ‘–βŸΆβˆž.(3.32) We shall check the condition (3.27). Let us observe that π‘Œπ‘–=1𝛾1βˆšπ‘–π‘–ξ“π‘˜=1ξ€·πΆπ‘˜ξ€Έ=1βˆ’1𝜎1βˆšπ‘–π‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡,(3.33) whereas before π‘π‘˜,𝑖=βˆ‘π‘–πœˆ=π‘˜(1/𝜈).
For 1≀𝑖<𝑗, we have the following decomposition: π‘—ξ“π‘˜=1π‘π‘˜,π‘—ξ€·π‘‹π‘˜ξ€Έ=βˆ’πœ‡π‘–ξ“π‘˜=1ξ€·π‘π‘˜,𝑖+𝑏𝑖+1,π‘—π‘‹ξ€Έξ€·π‘˜ξ€Έ+βˆ’πœ‡π‘—ξ“π‘˜=𝑖+1π‘π‘˜,π‘—ξ€·π‘‹π‘˜ξ€Έ=βˆ’πœ‡π‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡+𝑏𝑖𝑖+1,π‘—ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έ+βˆ’πœ‡π‘—ξ“π‘˜=𝑖+1π‘π‘˜,π‘—ξ€·π‘‹π‘˜ξ€Έ.βˆ’πœ‡(3.34) Thus, for 1≀𝑖<𝑗, we get ξ€·π‘Œ0≀Cov𝑖,π‘Œπ‘—ξ€Έ=1𝜎21βˆšξƒ©ξƒ©π‘–π‘—Varπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έξƒͺξƒ©βˆ’πœ‡+Covπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡;𝑏𝑖𝑖+1,π‘—ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺξƒ©βˆ’πœ‡+Covπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έ;βˆ’πœ‡π‘—ξ“π‘˜=𝑖+1π‘π‘˜,π‘—ξ€·π‘‹π‘˜ξ€Έ.βˆ’πœ‡ξƒͺξƒͺ(3.35) We shall find the bounds for each of the above terms. By Lemma 3.1, we have Varπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έξƒͺβˆ’πœ‡=𝜎2𝑖≀𝐢1𝑖,(3.36) for some constant 𝐢1>0 and every π‘–βˆˆβ„•. From the Cauchy-Schwarz inequality, we get Covπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡;𝑏𝑖𝑖+1,π‘—ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺβ‰€ξ„Άξ„΅ξ„΅βŽ·βˆ’πœ‡ξƒ©Varπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έξƒͺβˆ’πœ‡β‹…π‘π‘–+1,π‘—ξ„Άξ„΅ξ„΅βŽ·ξƒ©Varπ‘–ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺ.βˆ’πœ‡(3.37) Stationarity, association and our assumption (2.1) imply limπ‘–β†’βˆž1𝑖Varπ‘–ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺβˆ’πœ‡=𝜎21,(3.38) thus, Varπ‘–ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺβˆ’πœ‡β‰€πΆ2𝑖,(3.39) for some constant 𝐢2>0 and every π‘–βˆˆβ„•. Furthermore, 𝑖+1≀𝑗, thus, 𝑏𝑖+1,𝑗=π‘—ξ“πœˆ=11πœˆβˆ’π‘–ξ“πœˆ=11πœˆβ‰€1+logπ‘—βˆ’π›ΎπΈπ‘—βˆ’log𝑖≀1+log𝑖𝑗≀𝑝𝑖1/𝑝,(3.40) what follows from the inequalities π›ΎπΈβ‰€π‘›ξ“πœˆ=11πœˆβˆ’log𝑛≀1,1+logπ‘₯<𝑝π‘₯1/𝑝,𝑝>1,π‘₯β‰₯1,(3.41) where 𝛾𝐸=limπ‘›β†’βˆž(βˆ‘π‘›π‘˜=1(1/π‘˜)βˆ’log𝑛) denotes the Euler constant. From (3.36)–(3.40), we get Covπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έβˆ’πœ‡;𝑏𝑖𝑖+1,π‘—ξ“π‘˜=1ξ€·π‘‹π‘˜ξ€Έξƒͺβ‰€βˆšβˆ’πœ‡πΆ1𝐢2𝑗⋅𝑝⋅𝑖⋅𝑖1/𝑝.(3.42) Now, let us estimate the last term in (3.35): ξƒ©π΄βˆΆ=Covπ‘–ξ“π‘˜=1π‘π‘˜,π‘–ξ€·π‘‹π‘˜ξ€Έ;βˆ’πœ‡π‘—ξ“π‘˜=𝑖+1π‘π‘˜,π‘—ξ€·π‘‹π‘˜ξ€Έξƒͺβˆ’πœ‡=𝐴1+𝐴2,say,(3.43) where 𝐴1=π‘–ξ“πœˆ=2min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1𝑋Cov𝜈+π‘ βˆ’1;𝑋𝑖+π‘ ξ€Έπ‘πœˆ+π‘ βˆ’1,𝑖𝑏𝑖+𝑠,𝑗,𝐴2=π‘—βˆ’π‘–ξ“πœˆ=1min(𝑖,π‘—βˆ’π‘–)𝑠=1𝑋Cov𝑠;π‘‹πœˆ+𝑠+π‘–βˆ’1𝑏𝑠,π‘–π‘πœˆ+𝑠+π‘–βˆ’1,𝑗,(3.44) for 𝑖=1, we put 𝐴1=0.
By the monotonicity properties of the coefficients 𝑏𝑛,π‘š with respect to 𝑛 and fixed π‘š, Cauchy-Schwarz inequality, (3.40), and formula (3.7), we get min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1π‘πœˆ+π‘ βˆ’1,𝑖𝑏𝑖+𝑠,𝑗≀min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1𝑏𝑠,𝑖𝑏𝑖+𝑠,π‘—β‰€ξ„Άξ„΅ξ„΅βŽ·min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1𝑏2𝑠,π‘–β‹…ξ„Άξ„΅ξ„΅βŽ·min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1𝑏2𝑖+𝑠,π‘—β‰€ξ„Άξ„΅ξ„΅βŽ·π‘–ξ“π‘ =1𝑏2𝑠,π‘–β‹…ξ„Άξ„΅ξ„΅βŽ·min(π‘–βˆ’1,π‘—βˆ’π‘–)𝑠=1𝑏2𝑖+1,π‘—βˆšβ‰€π‘ξ‚΅π‘—2⋅𝑖⋅𝑖1/𝑝,(3.45) and by stationarity 𝐴1βˆšβ‰€π‘ξ‚΅π‘—2⋅𝑖⋅𝑖𝑖1/π‘ξ“πœˆ=2𝑋Cov𝑖+1;π‘‹πœˆξ€Έβˆš=𝑝𝑗2⋅𝑖⋅𝑖𝑖1/π‘ξ“πœˆ=2𝑋Cov1;π‘‹πœˆξ€Έ.(3.46) Similarly, we deal with 𝐴2. We have min(𝑖,π‘—βˆ’π‘–)𝑠=1𝑏𝑠,π‘–π‘πœˆ+𝑠+π‘–βˆ’1,π‘—β‰€ξ„Άξ„΅ξ„΅βŽ·min(𝑖,π‘—βˆ’π‘–)𝑠=1𝑏2𝑠,π‘–β‹…ξ„Άξ„΅ξ„΅βŽ·min(𝑖,π‘—βˆ’π‘–)𝑠=1𝑏2𝜈+𝑠+π‘–βˆ’1,π‘—β‰€ξ„Άξ„΅ξ„΅βŽ·π‘–ξ“π‘ =1𝑏2𝑠,π‘–β‹…ξ„Άξ„΅ξ„΅βŽ·π‘–ξ“π‘ =1𝑏2𝑖+1,π‘—βˆšβ‰€π‘ξ‚΅π‘—2⋅𝑖⋅𝑖1/𝑝,(3.47) and by stationarity 𝐴2βˆšβ‰€π‘ξ‚΅π‘—2⋅𝑖⋅𝑖1/π‘π‘—βˆ’π‘–ξ“πœˆ=1𝑋Cov1;π‘‹πœˆ+𝑖.(3.48) Therefore, from (3.46), (3.48), and (2.1), we get βˆšπ΄β‰€π‘ξ‚΅π‘—2⋅𝑖⋅𝑖𝑗1/π‘ξ“πœˆ=2𝑋Cov1;π‘‹πœˆξ€Έβ‰€πœŽ21π‘βˆšξ‚΅π‘—2⋅𝑖⋅𝑖1/𝑝.(3.49) Clearly, Cov(π‘Œπ‘–,π‘Œπ‘–) is bounded by some constant for all 𝑖β‰₯1. So that from (3.35), (3.36), (3.42) and (3.49), we obtain ξ€·π‘ŒCov𝑖,π‘Œπ‘—ξ€Έβ‰€πΆ3𝑖𝑗1/2βˆ’1/𝑝,(3.50) for all 1≀𝑖≀𝑗 and 𝑝>1, where the constant 𝐢3>0 is independent of 𝑖 and 𝑗 but may depend on 𝑝. Now, we shall check that the condition (3.27) holds. By (3.50) with 𝑝>2, we have βˆžξ“π‘—π‘—=1𝑖=11𝑖𝑗log2π‘—ξ€·π‘ŒCov𝑖,π‘Œπ‘—ξ€Έβ‰€πΆ3βˆžξ“π‘—=11𝑗log2𝑗1𝑗𝑗(1/2)βˆ’(1/𝑝)𝑖=11𝑖𝑖(1/2)βˆ’(1/𝑝)≀𝐢4βˆžξ“π‘—=11𝑗log2𝑗1𝑗(1/2)βˆ’(1/𝑝)𝑗(1/2)βˆ’(1/𝑝)<∞,(3.51) for some 𝐢4>0, since βˆ‘π‘—π‘–=1π‘–βˆ’(1/2)βˆ’(1/𝑝) is of order 𝑗(1/2)βˆ’(1/𝑝). By (3.28), we get 1log𝑛𝑛𝑖=11π‘–πˆξ€Ίπ‘Œπ‘–ξ€»ξƒ©β‰€π‘‘+πœ€βŸΆΞ¦π‘‘+πœ€βˆš2ξƒͺ1a.s.,asπ‘›βŸΆβˆž,log𝑛𝑛𝑖=11π‘–πˆξ€Ίπ‘Œπ‘–ξ€»ξƒ©β‰€π‘‘βˆ’πœ€βŸΆΞ¦π‘‘βˆ’πœ€βˆš2ξƒͺa.s.,asπ‘›βŸΆβˆž,(3.52) where Ξ¦(π‘₯) is the standard normal distribution. By the inequality √|Ξ¦(𝑑)βˆ’Ξ¦(𝑑+π‘Ž)|β‰€π‘Ž/2πœ‹, we get Φ𝑑+πœ€βˆš2ξƒͺ𝑑<Φ√2ξƒͺ+πœ€,Ξ¦π‘‘βˆ’πœ€βˆš2ξƒͺ𝑑>Φ√2ξƒͺβˆ’πœ€.(3.53) Combining the above considerations, we get for every πœ€>0limsupπ‘›β†’βˆž1log𝑛𝑛𝑖=11π‘–πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯βŽ¦ξƒ©π‘‘β‰€π‘₯β‰€Ξ¦βˆš2ξƒͺ+πœ€a.s.,liminfπ‘›β†’βˆž1log𝑛𝑛𝑖=11π‘–πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯βŽ¦ξƒ©π‘‘β‰€π‘₯β‰₯Φ√2ξƒͺβˆ’πœ€a.s.,(3.54) since πœ€>0 was arbitrary, we conclude that limπ‘›β†’βˆž1log𝑛𝑛𝑖=11π‘–πˆβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆπ‘–π‘˜=1π‘†π‘˜π‘–!πœ‡π‘–ξƒͺ1/𝛾1βˆšπ‘–βŽ€βŽ₯βŽ₯βŽ¦ξƒ©β‰€π‘₯=Ξ¦logπ‘₯√2ξƒͺa.s.(3.55) But √Φ(logπ‘₯/2)=𝐹(π‘₯) is the distribution of √exp(2𝒩). By continuity of 𝐹 and the same arguments as in [8], we get the uniform convergence and the conclusion follows.

Acknowledgement

The authors would like to thank the referees for careful reading of the paper and helpful comments.