Table of Contents
ISRN Cell Biology
Volume 2012, Article ID 124878, 12 pages
Research Article

Reprogramming of Human Huntington Fibroblasts Using mRNA

1Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraβe 1, 04103 Leipzig, Germany
2Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
3Interdisciplinary Centre for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, 04107 Leipzig, Germany
4Department Stereotactic and Functional Neurosurgery, University Hospital of Freiburg, Breisacher Straβe 67, 79106 Freiburg, Germany
5Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK

Received 10 August 2011; Accepted 7 September 2011

Academic Editors: A. Kretsovali, L. Shevde, and A. Tavares

Copyright © 2012 Antje Arnold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The derivation of induced pluripotent stem cells (iPS) from human cell sources using transduction based on viral vectors has been reported by several laboratories. Viral vector-induced integration is a potential cause of genetic modification. We have derived iPS cells from human foreskin, adult Huntington fibroblasts, and adult skin fibroblasts of healthy donors using a nonviral and nonintegrating procedure based on mRNA transfer. In vitro transcribed mRNA for 5 factors, oct-4, nanog, klf-4, c-myc, sox-2 as well as for one new factor, hTERT, was used to induce pluripotency. Reprogramming was analyzed by qPCR analysis of pluripotency gene expression, differentiation, gene expression array, and teratoma assays. iPS cells were shown to express pluripotency markers and were able to differentiate towards ecto-, endo-, and mesodermal lineages. This method may represent a safer technology for reprogramming and derivation of iPS cells. Cells produced by this method can more easily be transferred into the clinical setting.