Table of Contents
ISRN Applied Mathematics
Volume 2012, Article ID 127647, 49 pages
http://dx.doi.org/10.5402/2012/127647
Review Article

Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century: History, Current Developments, and Future Perspectives

Dipartimento ICEA, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Received 1 October 2012; Accepted 22 October 2012

Academic Editors: J. R. Fernandez, Q. Song, S. Sture, and Q. Zhang

Copyright © 2012 Massimiliano Ferronato. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, Pa, USA, 1997. View at Publisher · View at Google Scholar
  2. M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal of Computational Physics, vol. 182, no. 2, pp. 418–477, 2002. View at Publisher · View at Google Scholar
  3. D. J. Evans, “The use of pre-conditioning in iterative methods for solving linear equations with symmetric positive definite matrices,” Journal of the Institute of Mathematics and Its Applications, vol. 4, pp. 295–314, 1968. View at Google Scholar
  4. L. Cesari, “Sulla risoluzione dei sistemi di equazioni lineari per approssimazioni successive,” Atti dell’Accademia Nazionale dei Lincei, vol. 25, pp. 422–428, 1937. View at Google Scholar
  5. Y. Saad and H. A. van der Vorst, “Iterative solution of linear systems in the 20th century,” Journal of Computational and Applied Mathematics, vol. 123, no. 1-2, pp. 1–33, 2000. View at Publisher · View at Google Scholar
  6. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA, 1962.
  7. L.F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses to a masonry dam,” Philosophical Transactions of the Royal Society of London A, vol. 210, pp. 307–357, 1910. View at Google Scholar
  8. G. Cimmino, “Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,” Ricerca Scientifica e Programma Tecnico Economico Nazionale, vol. 9, pp. 326–333, 1938 (Italian). View at Google Scholar
  9. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, UK, 1965.
  10. E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in Proceedings of the 24th National Conference (ACM '69), pp. 157–172, 1969. View at Publisher · View at Google Scholar
  11. A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal on Numerical Analysis, vol. 10, pp. 345–363, 1973. View at Google Scholar
  12. R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested dissection,” SIAM Journal on Numerical Analysis, vol. 16, no. 2, pp. 346–358, 1979. View at Publisher · View at Google Scholar
  13. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.
  14. M. F. Tinney and J. W. Walker, “Direct solutions of sparse network equations by optimally ordered triangular factorization,” Proceedings of IEEE, vol. 55, no. 11, pp. 1801–1809, 1967. View at Publisher · View at Google Scholar
  15. J. W. H. Liu, “Modification of the minimum-degree algorithm by multiple elimination,” ACM Transactions on Mathematical Software, vol. 11, no. 2, pp. 141–153, 1985. View at Publisher · View at Google Scholar
  16. A. George and J. W. H. Liu, “The evolution of the minimum degree ordering algorithm,” SIAM Review, vol. 31, no. 1, pp. 1–19, 1989. View at Publisher · View at Google Scholar
  17. D. R. Fulkerson and P. Wolfe, “An algorithm for scaling matrices,” SIAM Review, vol. 4, pp. 142–146, 1962. View at Google Scholar
  18. A. R. Curtis and J. K. Reid, “On the automatic scaling of matrices for gaussian elimination,” IMA Journal of Applied Mathematics, vol. 10, no. 1, pp. 118–124, 1972. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of Research of the National Bureau of Standards B, vol. 49, pp. 409–436, 1952. View at Google Scholar
  20. C. Lanczos, “Solution of systems of linear equations by minimized-iterations,” Journal of Research of the National Bureau of Standards B, vol. 49, pp. 33–53, 1952. View at Google Scholar
  21. M. Engeli, T. Ginsburg, H. Rutishauser, and E. L. Stiefel, Refined Iteratie Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkhäuser, Basel, Switzerland, 1959.
  22. D. M. Young, Iterative methods for solving partial differential equations of elliptic type [Ph.D. thesis], Harvard University, Cambridge, Mass, USA, 1950.
  23. S. P. Frankel, “Convergence rates of iterative treatments of partial differential equations,” Mathematical Tables and Other Aids to Computation, vol. 4, pp. 65–75, 1950. View at Google Scholar
  24. I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse symmetric linear system,” Association for Computing Machinery, vol. 9, no. 3, pp. 302–325, 1983. View at Google Scholar
  25. I. S. Duff, “Parallel implementation of multifrontal schemes,” Parallel Computing. Theory and Applications, vol. 3, no. 3, pp. 193–204, 1986. View at Publisher · View at Google Scholar
  26. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, Oxford, UK, 1986.
  27. T. A. Davis, Direct Methods for Sparse Linear Systems, vol. 2, SIAM, Philadelphia, Pa, USA, 2006. View at Publisher · View at Google Scholar
  28. J. K. Reid, “On the method of conjugate gradients for the solution of large sparse systems of linear equations,” in Large Sparse Sets of Linear Equations, J. K. Reid, Ed., pp. 231–254, Academic Press, New York, NY, USA, 1971. View at Google Scholar
  29. C. C. Paige and M. A. Saunders, “Solutions of sparse indefinite systems of linear equations,” SIAM Journal on Numerical Analysis, vol. 12, no. 4, pp. 617–629, 1975. View at Google Scholar
  30. R. Fletcher, “Conjugate gradient methods for indefinite systems,” in Proceedings of the Dundee Biennal Conference on Numerical Analysis, G. A. Watson, Ed., pp. 73–89, Springer, New York, NY, USA, 1976. View at Google Scholar
  31. J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix,” Mathematics of Computation, vol. 31, no. 137, pp. 148–162, 1977. View at Google Scholar
  32. N. I. Buleev, “A numerical method for the solution of two-dimensional and three-dimensional equations of diffusion,” Mathematics Sbornik, vol. 51, pp. 227–238, 1960 (Russian). View at Google Scholar
  33. R. S. Varga, “Factorization and normalized iterative methods,” in Boundary Problems in Differential Equations, R. E. Langer, Ed., pp. 121–142, University of Wisconsin Press, Madison, Wis, USA, 1960. View at Google Scholar
  34. D. S. Kershaw, “The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations,” Journal of Computational Physics, vol. 26, no. 1, pp. 43–65, 1978. View at Google Scholar
  35. Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp. 856–869, 1986. View at Publisher · View at Google Scholar
  36. P. Sonneveld, “CGS, a fast Lanczos-type solver for nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 10, no. 1, pp. 36–52, 1989. View at Publisher · View at Google Scholar
  37. H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–644, 1992. View at Publisher · View at Google Scholar
  38. V. Faber and T. Manteuffel, “Necessary and sufficient conditions for the existence of a conjugate gradient method,” SIAM Journal on Numerical Analysis, vol. 21, no. 2, pp. 352–362, 1984. View at Publisher · View at Google Scholar
  39. R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-hermitian linear systems,” Numerische Mathematik, vol. 60, no. 3, pp. 315–339, 1991. View at Publisher · View at Google Scholar
  40. R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,” SIAM Journal on Scientific Computing, vol. 14, no. 2, pp. 470–482, 1993. View at Publisher · View at Google Scholar
  41. R. W. Freund and N. M. Nachtigal, “A new Krylov-subspace method for symmetric indefinite linear systems,” in Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, pp. 1253–1256, 1994.
  42. H. A. van der Vorst and C. Vuik, “GMRESR: a family of nested GMRES methods,” Numerical Linear Algebra with Applications, vol. 1, no. 4, pp. 369–386, 1994. View at Publisher · View at Google Scholar
  43. E. de Sturler, “Nested Krylov methods based on GCR,” Journal of Computational and Applied Mathematics, vol. 67, no. 1, pp. 15–41, 1996. View at Publisher · View at Google Scholar
  44. V. Simoncini and D. B. Szyld, “Recent computational developments in Krylov subspace methods for linear systems,” Numerical Linear Algebra with Applications, vol. 14, no. 1, pp. 1–59, 2007. View at Publisher · View at Google Scholar
  45. Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2nd edition, 2003. View at Publisher · View at Google Scholar
  46. S. Dupont and J. M. Marchal, “Preconditioned conjugate gradients for solving the transient Boussinesq equations in three-dimensional geometries,” International Journal for Numerical Methods in Fluids, vol. 8, no. 3, pp. 283–303, 1988. View at Google Scholar · View at Scopus
  47. J. K. Dickinson and P. A. Forsyth, “Preconditioned conjugate gradient methods for three-dimensional linear elasticity,” International Journal for Numerical Methods in Engineering, vol. 37, no. 13, pp. 2211–2234, 1994. View at Publisher · View at Google Scholar
  48. G. F. Carey, Y. Shen, and R. T. McLay, “Parallel conjugate gradient performance for least-squares finite elements and transport problems,” International Journal for Numerical Methods in Fluids, vol. 28, pp. 1421–1440, 1998. View at Google Scholar
  49. H. Mroueh and I. Shahrour, “Use of sparse iterative methods for the resolution of three-dimensional soil/structure interaction problems,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 23, no. 15, pp. 1961–1975, 1999. View at Google Scholar · View at Scopus
  50. P. Saint-George, G. Warzee, Y. Notay, and R. Beauwens, “Problem-dependent preconditioners for iterative solvers in FE elastostatics,” Computers and Structures, vol. 73, pp. 33–43, 1999. View at Google Scholar
  51. G. Gambolati, G. Pini, and M. Ferronato, “Numerical performance of projection methods in finite element consolidation models,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 25, no. 14, pp. 1429–1447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Axelsson, “A class of iterative methods for finite element equations,” Computer Methods in Applied Mechanics and Engineering, vol. 9, no. 2, pp. 123–127, 1976. View at Google Scholar
  53. A. Greenbaum, V. Pták, and Z. Strakoš, “Any nonincreasing convergence curve is possible for GMRES,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 3, pp. 465–469, 1996. View at Publisher · View at Google Scholar
  54. H. Mroueh and I. Shahrour, “A full 3-D finite element analysis of tunneling-adjacent structures interaction,” Computers and Geotechnics, vol. 30, no. 3, pp. 245–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. K. K. Phoon, S. H. Chan, K. C. Toh, and F. H. Lee, “Fast iterative solution of large undrained soil-structure interaction problems,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 27, no. 3, pp. 159–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ferronato, C. Janna, and G. Gambolati, “Mixed constraint preconditioning in computational contact mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 45–48, pp. 3922–3931, 2008. View at Publisher · View at Google Scholar
  57. J. B. Haga, H. Osnes, and H. P. Langtangen, “Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 35, no. 13, pp. 1466–1482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Gambolati, M. Ferronato, and C. Janna, “Preconditioners in computational geomechanics: a survey,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 35, no. 9, pp. 980–996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. K. K. Phoon, K. C. Toh, S. H. Chan, and F. H. Lee, “An efficient diagonal preconditioner for finite element solution of Biot's consolidation equations,” International Journal for Numerical Methods in Engineering, vol. 55, no. 4, pp. 377–400, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. M. F. Murphy, G. H. Golub, and A. J. Wathen, “A note on preconditioning for indefinite linear systems,” SIAM Journal on Scientific Computing, vol. 21, no. 6, pp. 1969–1972, 2000. View at Publisher · View at Google Scholar
  61. L. Bergamaschi and A.. Martínez, “RMCP: relaxed mixed constraint preconditioners for saddle point linear systems arising in geomechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 221, pp. 54–62, 2012. View at Publisher · View at Google Scholar
  62. X. Chen, K. C. Toh, and K. K. Phoon, “A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations,” International Journal for Numerical Methods in Engineering, vol. 65, no. 6, pp. 785–807, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. X. Chen and K. K. Phoon, “Applications of symmetric and nonsymmetric MSSOR preconditioners to large-scale Biot's consolidation problems with nonassociated plasticity,” Journal of Applied Mathematics, vol. 2012, Article ID 352081, 15 pages, 2012. View at Publisher · View at Google Scholar
  64. S.-L. Wu and C.-X. Li, “A modified SSOR preconditioning strategy for Helmholtz equations,” Journal of Applied Mathematics, vol. 2012, Article ID 365124, 9 pages, 2012. View at Publisher · View at Google Scholar
  65. M. Ferronato, G. Pini, and G. Gambolati, “The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 33, no. 3, pp. 405–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. V. Parter and E. E. Rothman, “Preconditioning Legendre spectral collocation approximations to elliptic problems,” SIAM Journal on Numerical Analysis, vol. 32, no. 2, pp. 333–385, 1995. View at Publisher · View at Google Scholar
  67. S. D. Kim and S. V. Parter, “Preconditioning Chebyshev spectral collocation by finite-difference operators,” SIAM Journal on Numerical Analysis, vol. 34, no. 3, pp. 939–958, 1997. View at Publisher · View at Google Scholar
  68. S. D. Kim, “Piecewise bilinear preconditioning of high-order finite element methods,” Electronic Transactions on Numerical Analysis, vol. 26, pp. 228–242, 2007. View at Google Scholar
  69. J. K. Kwon, S. Ryu, P. Kim, and S. D. Kim, “Finite element preconditioning on spectral element discretizations for coupled elliptic equations,” Journal of Applied Mathematics, vol. 2012, Article ID 245051, 16 pages, 2012. View at Publisher · View at Google Scholar
  70. S. F. Ashby, P. N. Brown, M. R. Dorr, and D. C. Hindmarsh, “A linear algebraic development of diffusion synthetic acceleration for for the Boltzmann transport equation,” SIAM Journal on Numerical Analysis, vol. 32, no. 1, pp. 179–214, 1995. View at Google Scholar
  71. V. A. Mousseau, D. A. Knoll, and W. J. Rider, “Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion,” Journal of Computational Physics, vol. 160, no. 2, pp. 743–765, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. K. J. Lange, C. Misra, P.-C. Sui, and N. Djilali, “A numerical study on preconditioning and partitioning schemes for reactive transport in a PEMFC catalyst layer,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 9–12, pp. 905–916, 2011. View at Publisher · View at Google Scholar
  73. E. Chow and Y. Saad, “ILUS: an incomplete LU preconditioner in sparse skyline format,” International Journal for Numerical Methods in Fluids, vol. 25, no. 7, pp. 739–748, 1997. View at Google Scholar
  74. N. Li, Y. Saad, and E. Chow, “Crout versions of ILU for general sparse matrices,” SIAM Journal on Scientific Computing, vol. 25, no. 2, pp. 716–728, 2003. View at Publisher · View at Google Scholar
  75. G. Gambolati, “Fast solution to finite element flow equations by Newton iteration and modified conjugate gradient method,” International Journal for Numerical Methods in Engineering, vol. 15, no. 5, pp. 661–675, 1980. View at Google Scholar · View at Scopus
  76. G. Gambolati, G. Pini, and G. Zilli, “Numerical comparison of preconditionings for large sparse finite element problems,” Numerical Methods for Partial Differential Equations, vol. 4, no. 2, pp. 139–157, 1988. View at Publisher · View at Google Scholar
  77. X. Chen, K. K. Phoon, and K. C. Toh, “Performance of zero fill-in preconditioning techniques for iterative solutions with geotechnical applications,” International Journal of Geomechanics, vol. 12, no. 5, pp. 596–605, 2012. View at Publisher · View at Google Scholar
  78. E. Chow and Y. Saad, “Experimental study of ILU preconditioners for indefinite matrices,” Journal of Computational and Applied Mathematics, vol. 86, no. 2, pp. 387–414, 1997. View at Publisher · View at Google Scholar
  79. I. Gustafsson, “A class of first order factorization methods,” BIT, vol. 18, no. 2, pp. 142–156, 1978. View at Publisher · View at Google Scholar
  80. J. W. Watts III, “A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation pressure equation,” Society of Petroleum Engineers Journal, vol. 21, no. 3, pp. 345–353, 1981. View at Google Scholar · View at Scopus
  81. N. Munksgaard, “Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients,” ACM Transactions on Mathematical Software, vol. 6, pp. 206–219, 1980. View at Google Scholar
  82. M. Bollhöfer, “A robust ILU with pivoting based on monitoring the growth of the inverse factors,” Linear Algebra and Its Applications, vol. 338, pp. 201–218, 2001. View at Publisher · View at Google Scholar
  83. M. Bollhöfer, “A robust and efficient ILU that incorporates the growth of the inverse triangular factors,” SIAM Journal on Scientific Computing, vol. 25, no. 1, pp. 86–103, 2003. View at Publisher · View at Google Scholar
  84. Y. Saad, “ILUT: a dual threshold incomplete ILU factorization,” Numerical Linear Algebra with Applications, vol. 1, no. 4, pp. 387–402, 1994. View at Publisher · View at Google Scholar
  85. M. T. Jones and P. E. Plassmann, “An improved incomplete Cholesky factorization,” ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 5–17, 1995. View at Publisher · View at Google Scholar
  86. C.-J. Lin and J. J. Moré, “Incomplete Cholesky factorizations with limited memory,” SIAM Journal on Scientific Computing, vol. 21, no. 1, pp. 24–45, 1999. View at Publisher · View at Google Scholar
  87. M. Bollhöfer and Y. Saad, “Multilevel preconditioners constructed from inverse-based ILUs,” SIAM Journal on Scientific Computing, vol. 27, no. 5, pp. 1627–1650, 2006. View at Publisher · View at Google Scholar
  88. P. Hénon, P. Ramet, and J. Roman, “On finding approximate supernodes for an efficient block- ILU (k) factorization,” Parallel Computing, vol. 34, no. 6–8, pp. 345–362, 2008. View at Publisher · View at Google Scholar
  89. A. Gupta and T. George, “Adaptive techniques for improving the performance of incomplete factorization preconditioning,” SIAM Journal on Scientific Computing, vol. 32, no. 1, pp. 84–110, 2010. View at Publisher · View at Google Scholar
  90. C. Janna, A. Comerlati, and G. Gambolati, “A comparison of projective and direct solvers for finite elements in elastostatics,” Advances in Engineering Software, vol. 40, no. 8, pp. 675–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. O. Axelsson and L. Yu. Kolotilina, “Diagonally compensated reduction and related preconditioning methods,” Numerical Linear Algebra with Applications, vol. 1, no. 2, pp. 155–177, 1994. View at Publisher · View at Google Scholar
  92. M. Benzi and M. Tůma, “A robust incomplete factorization preconditioner for positive definite matrices,” Numerical Linear Algebra with Applications, vol. 10, no. 5-6, pp. 385–400, 2003. View at Publisher · View at Google Scholar
  93. M. A. Ajiz and A. Jennings, “A robust incomplete Choleski-conjugate gradient algorithm,” International Journal for Numerical Methods in Engineering, vol. 20, no. 5, pp. 949–966, 1984. View at Publisher · View at Google Scholar
  94. B. A. Schrefler and R. Scotta, “A fully coupled dynamic model for two-phase fluid flow in deformable porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 24-25, pp. 3223–3246, 2001. View at Google Scholar · View at Scopus
  95. A. Mazzia, L. Bergamaschi, and M. Putti, “On the reliability of numerical solutions of brine transport in groundwater,” Transport in Porous Media, vol. 43, no. 1, pp. 65–86, 2001. View at Google Scholar · View at Scopus
  96. T. I. Zohdi, “Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 6–8, pp. 679–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Castelletto, M. Ferronato, and G. Gambolati, “Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods,” International Journal for Numerical Methods in Engineering, vol. 90, no. 8, pp. 988–1009, 2012. View at Google Scholar
  98. R. E. Bank and C. Wagner, “Multilevel ILU decomposition,” Numerische Mathematik, vol. 82, no. 4, pp. 543–576, 1999. View at Publisher · View at Google Scholar
  99. Y. Saad and J. Zhang, “BILUM: block versions of multielimination and multilevel ILU preconditioner for general sparse linear systems,” SIAM Journal on Scientific Computing, vol. 20, no. 6, pp. 2103–2121, 1999. View at Publisher · View at Google Scholar
  100. Y. Saad and J. Zhang, “BILUTM: a domain-based multilevel block ILUT preconditioner for general sparse matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 1, pp. 279–299, 1999. View at Publisher · View at Google Scholar
  101. Y. Saad and B. Suchomel, “ARMS: an algebraic recursive multilevel solver for general sparse linear systems,” Numerical Linear Algebra with Applications, vol. 9, no. 5, pp. 359–378, 2002. View at Publisher · View at Google Scholar
  102. J. K. Kraus, “Algebraic multilevel preconditioning of finite element matrices using local Schur complements,” Numerical Linear Algebra with Applications, vol. 13, no. 1, pp. 49–70, 2006. View at Publisher · View at Google Scholar
  103. O. Axelsson and P. S. Vassilevski, “Algebraic multilevel preconditioning methods. I,” Numerische Mathematik, vol. 56, no. 2-3, pp. 157–177, 1989. View at Publisher · View at Google Scholar
  104. O. Axelsson and P. S. Vassilevski, “Algebraic multilevel preconditioning methods. II,” SIAM Journal on Numerical Analysis, vol. 27, no. 6, pp. 1569–1590, 1990. View at Publisher · View at Google Scholar
  105. P. S. Vassilevski, Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations, Springer, Berlin, Germany, 2008.
  106. C. Janna, M. Ferronato, and G. Gambolati, “Multi-level incomplete factorizations for the iterative solution of non-linear finite element problems,” International Journal for Numerical Methods in Engineering, vol. 80, no. 5, pp. 651–670, 2009. View at Publisher · View at Google Scholar
  107. M. Tismenetsky, “A new preconditioning technique for solving large sparse linear systems,” Linear Algebra and Its Applications, vol. 154–156, pp. 331–353, 1991. View at Publisher · View at Google Scholar
  108. I. E. Kaporin, “High quality preconditioning of a general symmetric positive definite matrix based on its UTU+UTR+RTU-decomposition,” Numerical Linear Algebra with Applications, vol. 5, no. 6, pp. 483–509, 1998. View at Google Scholar
  109. I. S. Duff and G. A. Meurant, “The effect of ordering on preconditioned conjugate gradients,” BIT Numerical Mathematics, vol. 29, no. 4, pp. 635–657, 1989. View at Publisher · View at Google Scholar
  110. E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang, “Ordering methods for preconditioned conjugate gradient methods applied to unstructured grid problems,” SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 3, pp. 944–961, 1992. View at Publisher · View at Google Scholar
  111. L. C. Dutto, “The effect of ordering on preconditioned GMRES algorithm, for solving the compressible Navier-Stokes equations,” International Journal for Numerical Methods in Engineering, vol. 36, no. 3, pp. 457–497, 1993. View at Publisher · View at Google Scholar
  112. M. Benzi, D. B. Szyld, and A. van Duin, “Orderings for incomplete factorization preconditioning of nonsymmetric problems,” SIAM Journal on Scientific Computing, vol. 20, no. 5, pp. 1652–1670, 1999. View at Publisher · View at Google Scholar
  113. G. Gambolati, G. Pini, and M. Ferronato, “Scaling improves stability of preconditioned CG-like solvers for FE consolidation equations,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 27, no. 12, pp. 1043–1056, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. M. W. Benson, Iterative solution of large scale linear systems [M.S. thesis], Lakehead University, Ontario, Canada, 1973.
  115. P. O. Frederickson, “Fast approximate inversion of large sparse linear systems,” Mathematical Report 7, Lakehead University, Thunder Bay, Ontario, Canada, 1975. View at Google Scholar
  116. J. D. F. Cosgrove, J. C. Diaz, and A. Griewank, “Approximate inverse preconditioning for sparse linear systems,” International Journal of Computational Mathematics, vol. 44, pp. 91–110, 1992. View at Google Scholar
  117. M. J. Grote and T. Huckle, “Parallel preconditioning with sparse approximate inverses,” SIAM Journal on Scientific Computing, vol. 18, no. 3, pp. 838–853, 1997. View at Publisher · View at Google Scholar
  118. N. I. M. Gould and J. A. Scott, “Sparse approximate-inverse preconditioners using norm-minimization techniques,” SIAM Journal on Scientific Computing, vol. 19, no. 2, pp. 605–625, 1998. View at Publisher · View at Google Scholar
  119. E. Chow and Y. Saad, “Approximate inverse preconditioners via sparse-sparse iterations,” SIAM Journal on Scientific Computing, vol. 19, no. 3, pp. 995–1023, 1998. View at Publisher · View at Google Scholar
  120. R. M. Holland, A. J. Wathen, and G. J. Shaw, “Sparse approximate inverses and target matrices,” SIAM Journal on Scientific Computing, vol. 26, no. 3, pp. 1000–1011, 2005. View at Publisher · View at Google Scholar
  121. Z. Jia and B. Zhu, “A power sparse approximate inverse preconditioning procedure for large sparse linear systems,” Numerical Linear Algebra with Applications, vol. 16, no. 4, pp. 259–299, 2009. View at Publisher · View at Google Scholar
  122. M. Benzi, C. D. Meyer, and M. Tůma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM Journal on Scientific Computing, vol. 17, no. 5, pp. 1135–1149, 1996. View at Publisher · View at Google Scholar
  123. M. Benzi and M. Tůma, “A sparse approximate inverse preconditioner for nonsymmetric linear systems,” SIAM Journal on Scientific Computing, vol. 19, no. 3, pp. 968–994, 1998. View at Publisher · View at Google Scholar
  124. M. Benzi, J. K. Cullum, and M. Tůma, “Robust approximate inverse preconditioning for the conjugate gradient method,” SIAM Journal on Scientific Computing, vol. 22, no. 4, pp. 1318–1332, 2000. View at Publisher · View at Google Scholar
  125. L. Bergamaschi, G. Pini, and F. Sartoretto, “Approximate inverse preconditioning in the parallel solution of sparse eigenproblems,” Numerical Linear Algebra with Applications, vol. 7, no. 3, pp. 99–116, 2000. View at Google Scholar
  126. R. Bridson and W.-P. Tang, “Multiresolution approximate inverse preconditioners,” SIAM Journal on Scientific Computing, vol. 23, no. 2, pp. 463–479, 2001. View at Publisher · View at Google Scholar
  127. G. A. Meurant, “A multilevel AINV preconditioner,” Numerical Algorithms, vol. 29, no. 1–3, pp. 107–129, 2002. View at Publisher · View at Google Scholar
  128. M. Bollhöfer and Y. Saad, “A factored approximate inverse preconditioner with pivoting,” SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 3, pp. 692–705, 2002. View at Publisher · View at Google Scholar
  129. L. Bergamaschi, G. Pini, and F. Sartoretto, “Computational experience with sequential and parallel, preconditioned Jacobi-Davidson for large, sparse symmetric matrices,” Journal of Computational Physics, vol. 188, no. 1, pp. 318–331, 2003. View at Publisher · View at Google Scholar
  130. L. Bergamaschi, M. Ferronato, and G. Gambolati, “Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 25-28, pp. 2647–2656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. L. Yu. Kolotilina and A. Yu. Yeremin, “Factorized sparse approximate inverse preconditionings. I. Theory,” SIAM Journal on Matrix Analysis and Applications, vol. 14, no. 1, pp. 45–58, 1993. View at Publisher · View at Google Scholar
  132. I. E. Kaporin, “New convergence results and preconditioning strategies for the conjugate gradient method,” Numerical Linear Algebra with Applications, vol. 1, no. 2, pp. 179–210, 1994. View at Publisher · View at Google Scholar
  133. L. Yu. Kolotilina, A. A. Nikishin, and A. Yu. Yeremin, “Factorized sparse approximate inverse preconditionings. IV. Simple approaches to rising efficiency,” Numerical Linear Algebra with Applications, vol. 6, no. 7, pp. 515–531, 1999. View at Google Scholar
  134. T. Huckle, “Factorized sparse approximate inverses for preconditioning,” Journal of Supercomputing, vol. 25, no. 2, pp. 109–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Bergamaschi, G. Gambolati, and G. Pini, “A numerical experimental study of inverse preconditioning for the parallel iterative solution to 3D finite element flow equations,” Journal of Computational and Applied Mathematics, vol. 210, no. 1-2, pp. 64–70, 2007. View at Publisher · View at Google Scholar
  136. M. Ferronato, C. Janna, and G. Pini, “Shifted FSAI preconditioners for the efficient parallel solution of non-linear groundwater flow models,” International Journal for Numerical Methods in Engineering, vol. 89, no. 13, pp. 1707–1719, 2012. View at Publisher · View at Google Scholar
  137. A. Yu. Yeremin and A. A. Nikishin, “Factorized sparse approximate inverse preconditioning of linear systems with nonsymmetric matrices,” Journal of Mathematical Sciences, vol. 121, pp. 2448–2457, 2004. View at Publisher · View at Google Scholar
  138. L. Bergamaschi and A. Martínez, “Parallel acceleration of Krylov solvers by factorized approximate inverse preconditioners,” in Proceedings of the Conference on High Performance Computing for Computational Science (VECPAR '04), vol. 3402 of Lecture Notes in Computer Science, pp. 623–636, June 2005. View at Scopus
  139. S. Demko, W. F. Moss, and P. W. Smith, “Decay rates for inverses of band matrices,” Mathematics of Computation, vol. 43, no. 168, pp. 491–499, 1984. View at Publisher · View at Google Scholar
  140. M. H. Koulaei and F. Toutounian, “Factored sparse approximate inverse of block tridiagonal and block pentadiagonal matrices,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 223–234, 2007. View at Publisher · View at Google Scholar
  141. E. Chow, “A priori sparsity patterns for parallel sparse approximate inverse preconditioners,” SIAM Journal on Scientific Computing, vol. 21, no. 5, pp. 1804–1822, 2000. View at Publisher · View at Google Scholar
  142. L. Bergamaschi, A. Martínez, and G. Pini, “Parallel preconditioned conjugate gradient optimization of the Rayleigh quotient for the solution of sparse eigenproblems,” Applied Mathematics and Computation, vol. 175, no. 2, pp. 1694–1715, 2006. View at Publisher · View at Google Scholar
  143. T. Huckle, “Approximate sparsity patterns for the inverse of a matrix and preconditioning,” Applied Numerical Mathematics, vol. 30, no. 2-3, pp. 291–303, 1999. View at Publisher · View at Google Scholar
  144. C. Janna and M. Ferronato, “Adaptive pattern research for block FSAI preconditioning,” SIAM Journal on Scientific Computing, vol. 33, no. 6, pp. 3357–3380, 2011. View at Publisher · View at Google Scholar
  145. A. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin, and A. Yu. Yeremin, “A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form,” Numerical Linear Algebra with Applications, vol. 8, no. 3, pp. 165–179, 2001. View at Google Scholar
  146. M. Benzi and M. Tůma, “A comparative study of sparse approximate inverse preconditioners,” Applied Numerical Mathematics, vol. 30, no. 2-3, pp. 305–340, 1999. View at Publisher · View at Google Scholar
  147. S. T. Barnard, L. M. Bernardo, and H. D. Simon, “MPI implementation of the SPAI preconditioner on the T3E,” International Journal of High Performance Computing Applications, vol. 13, no. 2, pp. 107–123, 1999. View at Google Scholar · View at Scopus
  148. L. Bergamaschi, M. Ferronato, and G. Gambolati, “Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations,” Journal of Computational Physics, vol. 227, no. 23, pp. 9885–9897, 2008. View at Publisher · View at Google Scholar
  149. M. Ferronato, C. Janna, and G. Pini, “Parallel solution to ill-conditioned FE geomechanical problems,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 36, no. 4, pp. 422–437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Mathematics of Computation, vol. 31, no. 138, pp. 333–390, 1977. View at Google Scholar
  151. A. Brandt, “A guide to multigrid development,” in Multigrid Methods, W. Hackbusch and U. Trottenberg, Eds., vol. 960, pp. 220–312, Springer, Berlin, Germany, 1982. View at Google Scholar
  152. W. L. Briggs, V. E. Henson, and S. F. Mccormick, A Multigrid Tutorial, SIAM, Philadelphia, Pa, USA, 2nd edition, 2000. View at Publisher · View at Google Scholar
  153. A. Brandt, S. F. Mccormick, and J. W. Ruge, “Algebraic multigrid (AMG) for sparse matrix equations,” in Sparsity and Its Applications, D. J. Evans and U. Trottenberg, Eds., pp. 257–284, Cambridge University Press, Cambridge, Mass, USA, 1984. View at Google Scholar
  154. A. Brandt, “Algebraic multigrid theory: the symmetric case,” Applied Mathematics and Computation, vol. 19, no. 1–4, pp. 23–56, 1986. View at Publisher · View at Google Scholar
  155. J. W. Ruge and K. Stüben, “Algebraic multigrid (AMG),” in Multigrid Methods, vol. 3, pp. 73–130, SIAM, Philadelphia, Pa, USA, 1987. View at Google Scholar
  156. K. Stüben, “A review of algebraic multigrid,” Journal of Computational and Applied Mathematics, vol. 128, no. 1-2, pp. 281–309, 2001. View at Publisher · View at Google Scholar
  157. P. Vaněk, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems,” Computing, vol. 56, no. 3, pp. 179–196, 1996. View at Publisher · View at Google Scholar
  158. Y. Notay, “Algebraic multigrid and algebraic multilevel methods: a theoretical comparison,” Numerical Linear Algebra with Applications, vol. 12, no. 5-6, pp. 419–451, 2005. View at Publisher · View at Google Scholar
  159. Y. Notay, “Aggregation-based algebraic multilevel preconditioning,” SIAM Journal on Matrix Analysis and Applications, vol. 27, no. 4, pp. 998–1018, 2006. View at Publisher · View at Google Scholar
  160. R. S. Tuminaro and C. Tong, “Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines,” in Proceedings of the Supercomputing ACM/IEEE Conference, J. Donnelley, Ed., 2000. View at Publisher · View at Google Scholar
  161. A. Krechel and K. Stüben, “Parallel algebraic multigrid based on subdomain blocking,” Parallel Computing, vol. 27, no. 8, pp. 1009–1031, 2001. View at Publisher · View at Google Scholar · View at Scopus
  162. V. E. Henson and U. M. Yang, “BoomerAMG: a parallel algebraic multigrid solver and preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177, 2002. View at Publisher · View at Google Scholar
  163. F. H. Pereira, S. L. L. Verardi, and S. I. Nabeta, “A wavelet-based algebraic multigrid preconditioner for sparse linear systems,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1098–1107, 2006. View at Publisher · View at Google Scholar
  164. C. R. Dohrmann, “Interpolation operators for algebraic multigrid by local optimization,” SIAM Journal on Scientific Computing, vol. 29, no. 5, pp. 2045–2058, 2007. View at Publisher · View at Google Scholar
  165. M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,” SIAM Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669, 1993. View at Publisher · View at Google Scholar
  166. M. Adams, M. Brezina, J. Hu, and R. Tuminaro, “Parallel multigrid smoothing: polynomial versus Gauss-Seidel,” Journal of Computational Physics, vol. 188, no. 2, pp. 593–610, 2003. View at Publisher · View at Google Scholar
  167. A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid smoothers for ultraparallel computing,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2864–2887, 2011. View at Publisher · View at Google Scholar
  168. W.-P. Tang and W. L. Wan, “Sparse approximate inverse smoother for multigrid,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1236–1252, 2000. View at Publisher · View at Google Scholar
  169. O. Bröker and M. J. Grote, “Sparse approximate inverse smoothers for geometric and algebraic multigrid,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 61–80, 2002. View at Publisher · View at Google Scholar
  170. R. D. Falgout and P. S. Vassilevski, “On generalizing the algebraic multigrid framework,” SIAM Journal on Numerical Analysis, vol. 42, no. 4, pp. 1669–1693, 2004. View at Publisher · View at Google Scholar
  171. M. Brezina, R. D. Falgout, S. P. Maclachlan, T. A. Manteuffel, S. F. Mccormick, and J. W. Ruge, “Adaptive algebraic multigrid,” SIAM Journal on Scientific Computing, vol. 27, no. 4, pp. 1261–1286, 2006. View at Publisher · View at Google Scholar
  172. E. Virnik, “An algebraic multigrid preconditioner for a class of singular M-matrices,” SIAM Journal on Scientific Computing, vol. 29, no. 5, pp. 1982–1991, 2007. View at Publisher · View at Google Scholar
  173. S. P. Maclachlan and C. W. Oosterlee, “Algebraic multigrid solvers for complex-valued matrices,” SIAM Journal on Scientific Computing, vol. 30, no. 3, pp. 1548–1571, 2008. View at Publisher · View at Google Scholar
  174. L. N. Olson, J. Schroder, and R. S. Tuminaro, “A new perspective on strength measures in algebraic multigrid,” Numerical Linear Algebra with Applications, vol. 17, no. 4, pp. 713–733, 2010. View at Publisher · View at Google Scholar
  175. K. H. Leem, S. Oliveira, and D. E. Stewart, “Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations,” Numerical Linear Algebra with Applications, vol. 11, no. 2-3, pp. 293–308, 2004. View at Publisher · View at Google Scholar
  176. P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro, “A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods,” International Journal for Numerical Methods in Engineering, vol. 64, no. 2, pp. 204–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. J. J. Heys, T. A. Manteuffel, S. F. Mccormick, and L. N. Olson, “Algebraic multigrid for higher-order finite elements,” Journal of Computational Physics, vol. 204, no. 2, pp. 520–532, 2005. View at Publisher · View at Google Scholar
  178. J. J. Hu, R. S. Tuminaro, P. B. Bochev, C. J. Garasi, and A. C. Robinson, “Toward an h-independent algebraic multigrid method for Maxwell's equations,” SIAM Journal on Scientific Computing, vol. 27, no. 5, pp. 1669–1688, 2006. View at Publisher · View at Google Scholar
  179. M. Brezina, C. Tong, and R. Becker, “Parallel algebraic multigrids for structural mechanics,” SIAM Journal on Scientific Computing, vol. 27, no. 5, pp. 1534–1554, 2006. View at Publisher · View at Google Scholar
  180. C. D. Riyanti, A. Kononov, Y. A. Erlangga et al., “A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation,” Journal of Computational Physics, vol. 224, no. 1, pp. 431–448, 2007. View at Publisher · View at Google Scholar
  181. M. Pennacchio and V. Simoncini, “Algebraic multigrid preconditioners for the bidomain reaction-diffusion system,” Applied Numerical Mathematics, vol. 59, no. 12, pp. 3033–3050, 2009. View at Publisher · View at Google Scholar
  182. F. Willien, I. Chetvchenko, R. Masson, P. Quandalle, L. Agelas, and S. Requena, “AMG preconditioning for sedimentary basin simulations in Temis calculator,” Marine and Petroleum Geology, vol. 26, no. 4, pp. 519–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. P. Thum, T. Clees, G. Weyns, G. Nelissen, and J. Deconinck, “Efficient algebraic multigrid for migration-diffusion-convection-reaction systems arising in electrochemical simulations,” Journal of Computational Physics, vol. 229, no. 19, pp. 7260–7276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. M. W. Gee, U. Küttler, and W. A. Wall, “Truly monolithic algebraic multigrid for fluid-structure interaction,” International Journal for Numerical Methods in Engineering, vol. 85, no. 8, pp. 987–1016, 2011. View at Publisher · View at Google Scholar
  185. H. Yang and W. Zulehner, “Numerical simulation of fluid-structure interaction problems on hybrid meshes with algebraic multigrid methods,” Journal of Computational and Applied Mathematics, vol. 18, pp. 5367–5379, 2011. View at Google Scholar
  186. M. M. Resch, “High performance computer simulation for engineering: a review,” in Trends in Parallel, Distributed, Grid and Cloud Computing for Engineering, P. Iványi and B. H. V. Topping, Eds., pp. 177–186, Saxe-Coburg Publications, Stirlingshire, UK, 2011. View at Google Scholar
  187. Y. Saad, “ILUM: a parallel multielimination ILU preconditioner for general sparse matrices,” Tech. Rep. CS-92-241, Department of Computer Science, University of Minnesota, 1992. View at Google Scholar
  188. G. Karypis and V. Kumar, “Parallel threshold-based ILU factorization,” in Proceedings of the Supercomputing ACM/IEEE Conference, pp. 1–24, 1997.
  189. D. Hysom and A. Pothen, “A scalable parallel algorithm for incomplete factor preconditioning,” SIAM Journal on Scientific Computing, vol. 22, no. 6, pp. 2194–2215, 2001. View at Publisher · View at Google Scholar
  190. M. Magolu monga Made and H. A. van der Vorst, “Parallel incomplete factorizations with pseudo-overlapped subdomains,” Parallel Computing, vol. 27, no. 8, pp. 989–1008, 2001. View at Publisher · View at Google Scholar
  191. M. Benzi and M. Tůma, “A parallel solver for large-scale Markov chains,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 135–153, 2002. View at Publisher · View at Google Scholar
  192. G. Haase, M. Kuhn, and S. Reitzinger, “Parallel algebraic multigrid methods on distributed memory computers,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 410–427, 2002. View at Publisher · View at Google Scholar
  193. H. de Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners,” SIAM Journal on Matrix Analysis and Applications, vol. 27, no. 4, pp. 1019–1039, 2006. View at Publisher · View at Google Scholar
  194. R. D. Falgout and U. M. Yang, “Hypre: a library of high performance preconditioners,” in Computational Science ICCS 2002 part III, vol. 2331 of Lecture Notes in Computer Science, pp. 632–641, Springer, Berlin, Germany, 2002. View at Google Scholar
  195. M. A. Heroux, R. A. Bartlett, V. E. Howle et al., “An overview of the Trilinos project,” ACM Transactions on Mathematical Software, vol. 31, no. 3, pp. 397–423, 2005. View at Publisher · View at Google Scholar
  196. P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, “Approximating the inverse of a matrix for use in iterative algorithms on vector processors,” Computing, vol. 22, no. 3, pp. 257–268, 1979. View at Publisher · View at Google Scholar
  197. O. G. Johnson, C. A. Micchelli, and G. Paul, “Polynomial preconditioners for conjugate gradient calculations,” SIAM Journal on Numerical Analysis, vol. 20, no. 2, pp. 362–376, 1983. View at Publisher · View at Google Scholar
  198. Y. Saad, “Practical use of polynomial preconditionings for the conjugate gradient method,” SIAM Journal on Scientific and Statistical Computing, vol. 6, no. 4, pp. 865–881, 1985. View at Publisher · View at Google Scholar
  199. E. L. Stiefel, “Kernel polynomials in linear algebra and their numerical applications,” US National Bureau of Standards Applied Mathematics Series, no. 49, pp. 1–24, 1958. View at Google Scholar
  200. O. Axelsson, “A survey of preconditioned iterative methods for linear systems of algebraic equations,” BIT Numerical Mathematics, vol. 25, no. 1, pp. 165–187, 1985. View at Publisher · View at Google Scholar
  201. B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, Mass, USA, 1996.
  202. C. Janna, M. Ferronato, and G. Gambolati, “A block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2468–2484, 2010. View at Publisher · View at Google Scholar
  203. M. Ferronato, C. Janna, and G. Pini, “A generalized block FSAI preconditioner for nonsymmetric linear systems,” Journal of Computational and Applied Mathematics. In Press.
  204. M. Ferronato, C. Janna, and G. Pini, “Efficient parallel solution to large-size sparse eigenproblems with block FSAI preconditioning,” Numerical Linear Algebra with Applications, vol. 19, no. 5, pp. 797–815, 2012. View at Publisher · View at Google Scholar · View at Scopus
  205. L. Bergamaschi, A. Martínez, and G. Pini, “Parallel Rayleigh quotient optimization with FSAI-based preconditioning,” Journal of Applied Mathematics, vol. 2012, Article ID 872901, 14 pages, 2012. View at Publisher · View at Google Scholar
  206. C. Janna, N. Castelletto, and M. Ferronato, “Efficient coupling of graph partitioning techniques with the adaptive block FSAI parallel preconditioner,” ACM Transactions on Mathematical Software. In Press.
  207. C. Janna, M. Ferronato, and G. Gambolati, “Enhanced Block FSAI preconditioning using domain decomposition techniques,” SIAM Journal on Scientific Computing. In Press.
  208. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23, Springer, Berlin, Germany, 1994.
  209. P. Wesseling, Principles of Computational Fluid Dynamics, vol. 29, Springer, Berlin, Germany, 2001. View at Publisher · View at Google Scholar
  210. M. H. Wright, “Interior methods for constrained optimization,” Acta Numerica, vol. 1, pp. 341–407, 1992. View at Google Scholar
  211. S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, Pa, USA, 1997. View at Publisher · View at Google Scholar
  212. I. Perugia, “A field-based mixed formulation for the two-dimensional magnetostatic problem,” SIAM Journal on Numerical Analysis, vol. 34, no. 6, pp. 2382–2391, 1997. View at Publisher · View at Google Scholar
  213. I. Perugia, V. Simoncini, and M. Arioli, “Linear algebra methods in a mixed approximation of magnetostatic problems,” SIAM Journal on Scientific Computing, vol. 21, no. 3, pp. 1085–1101, 1999. View at Publisher · View at Google Scholar
  214. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15, Springer, New York, NY, USA, 1991.
  215. D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge, Mass, USA, 2nd edition, 2001.
  216. M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005. View at Publisher · View at Google Scholar
  217. J. H. Prevost, “Partitioned solution procedure for simultaneous integration of coupled-field problems,” Communications in Numerical Methods in Engineering, vol. 13, no. 4, pp. 239–247, 1998. View at Google Scholar · View at Scopus
  218. G. Gambolati, G. Pini, and M. Ferronato, “Direct, partitioned and projected solution to finite element consolidation models,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 26, no. 14, pp. 1371–1383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  219. L. Lukšan and J. Vlček, “Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems,” Numerical Linear Algebra with Applications, vol. 5, no. 3, pp. 219–247, 1998. View at Publisher · View at Google Scholar
  220. C. Keller, N. I. M. Gould, and A. J. Wathen, “Constraint preconditioning for indefinite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1300–1317, 2000. View at Publisher · View at Google Scholar
  221. I. Perugia and V. Simoncini, “Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations,” Numerical Linear Algebra with Applications, vol. 7, no. 7-8, pp. 585–616, 2000. View at Google Scholar
  222. L. Bergamaschi, J. Gondzio, and G. Zilli, “Preconditioning indefinite systems in interior point methods for optimization,” Computational Optimization and Applications, vol. 28, no. 2, pp. 149–171, 2004. View at Publisher · View at Google Scholar
  223. H. S. Dollar, “Constraint-style preconditioners for regularized saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 2, pp. 672–684, 2007. View at Publisher · View at Google Scholar
  224. C. Durazzi and V. Ruggiero, “Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems,” Numerical Linear Algebra with Applications, vol. 10, no. 8, pp. 673–688, 2003. View at Publisher · View at Google Scholar
  225. M. Benzi and V. Simoncini, “On the eigenvalues of a class of saddle point matrices,” Numerische Mathematik, vol. 103, no. 2, pp. 173–196, 2006. View at Publisher · View at Google Scholar
  226. L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, “Inexact constraint preconditioners for linear systems arising in interior point methods,” Computational Optimization and Applications, vol. 36, no. 2-3, pp. 137–147, 2007. View at Publisher · View at Google Scholar
  227. V. Simoncini, “Block triangular preconditioners for symmetric saddle-point problems,” Applied Numerical Mathematics, vol. 49, no. 1, pp. 63–80, 2004. View at Publisher · View at Google Scholar
  228. D. Silvester and A. Wathen, “Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners,” SIAM Journal on Numerical Analysis, vol. 31, no. 5, pp. 1352–1367, 1994. View at Publisher · View at Google Scholar
  229. D. J. Silvester, H. C. Elman, D. Kay, and A. J. Wathen, “Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow,” Journal of Computational and Applied Mathematics, vol. 128, no. 1-2, pp. 261–279, 2001. View at Publisher · View at Google Scholar
  230. H. C. Elman, D. J. Silvester, and A. J. Wathen, “Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations,” Numerische Mathematik, vol. 90, no. 4, pp. 665–688, 2002. View at Publisher · View at Google Scholar
  231. M. Ferronato, L. Bergamaschi, and G. Gambolati, “Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems,” International Journal for Numerical Methods in Engineering, vol. 81, no. 3, pp. 381–402, 2010. View at Publisher · View at Google Scholar
  232. O. Axelsson and M. Neytcheva, “Eigenvalue estimates for preconditioned saddle point matrices,” Numerical Linear Algebra with Applications, vol. 13, no. 4, pp. 339–360, 2006. View at Publisher · View at Google Scholar
  233. L. Bergamaschi, “On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices,” Numerical Linear Algebra with Applications, vol. 19, no. 4, pp. 754–772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  234. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers, Oxford University Press, Oxford, UK, 2005.
  235. L. Bergamaschi and A. Martínez, “FSAI-based parallel mixed constraint preconditioners for saddle point problems arising in geomechanics,” Journal of Computational and Applied Mathematics, vol. 236, no. 3, pp. 308–318, 2011. View at Publisher · View at Google Scholar
  236. J. B. Haga, H. Osnes, and H. P. Langtangen, “A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters,” Computational Geosciences, vol. 16, no. 3, pp. 723–734, 2012. View at Publisher · View at Google Scholar
  237. C. Janna, M. Ferronato, and G. Gambolati, “Parallel inexact constraint preconditioning for ill-conditioned consolidation problems,” Computational Geosciences, vol. 16, no. 3, pp. 661–675, 2012. View at Publisher · View at Google Scholar