Table of Contents
ISRN Biomathematics
Volume 2012, Article ID 132342, 12 pages
http://dx.doi.org/10.5402/2012/132342
Research Article

Spatially Explicit Nonlinear Models for Explaining the Occurrence of Infectious Zoonotic Diseases

1BlueCross BlueShield of Tennessee, Department of Medical Informatics, 1 Cameron Hill Circle, Building 2.1, Chattanooga, TN 37402, USA
2Forestry and Natural Resources Department, Clemson University, Georgetown, SC, USA

Received 2 August 2012; Accepted 24 September 2012

Academic Editors: H. Ishikawa, M. Jose, Y. Pan, and W. Raffelsberger

Copyright © 2012 Stephen Jones et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Wimberly, A. D. Baer, and M. J. Yabsley, “Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens,” International Journal of Health Geographics, vol. 7, p. 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Winters, R. J. Eisen, S. Lozano-Fuentes, C. G. Moore, W. J. Pape, and L. Eisen, “Predictive spatial models for risk of West Nile virus exposure in eastern and western Colorado,” American Journal of Tropical Medicine and Hygiene, vol. 79, no. 4, pp. 581–590, 2008. View at Google Scholar · View at Scopus
  3. R. S. Lane and H. A. Stubbs, “Host-seeking behavior of adult Ixodes pacificus (Acari: Ixodidae) as determined by flagging vegetation,” Journal of Medical Entomology, vol. 27, no. 3, pp. 282–287, 1990. View at Google Scholar · View at Scopus
  4. U. Kitron, C. J. Jones, J. K. Bouseman, J. A. Nelson, and D. L. Baumgartner, “Spatial analysis of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle County, Illinois,” Journal of Medical Entomology, vol. 29, no. 2, pp. 259–266, 1992. View at Google Scholar · View at Scopus
  5. S. Aronoff, Geographic Information Systems: A Management Perspective, WDL Publications, Ottawa, Canada, 1989.
  6. R. J. Eisen, P. S. Mead, A. M. Meyer, L. E. Pfaff, K. K. Bradley, and L. Eisen, “Ecoepidemiology of tularemia in the Southcentral United States,” American Journal of Tropical Medicine and Hygiene, vol. 78, no. 4, pp. 586–594, 2008. View at Google Scholar · View at Scopus
  7. G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy, and E. Israel, “Environmental risk factors for Lyme disease identified with geographic information systems,” American Journal of Public Health, vol. 85, no. 7, pp. 944–948, 1995. View at Google Scholar · View at Scopus
  8. M. E. Killilea, A. Swei, R. S. Lane, C. J. Briggs, and R. S. Ostfeld, “Spatial dynamics of lyme disease: a review,” EcoHealth, vol. 5, no. 2, pp. 167–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Gaff and E. Schaefer, “Metapopulation models in tick-borne disease transmission modelling,” Advances in Experimental Medicine and Biology, vol. 673, pp. 51–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Eisen and R. J. Eisen, “Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases,” Emerging Infectious Diseases, vol. 13, no. 12, pp. 1816–1820, 2007. View at Google Scholar · View at Scopus
  11. R. Sugumaran, S. R. Larson, and J. P. DeGroote, “Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States,” International Journal of Health Geographics, vol. 8, no. 1, p. 43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Mostashari, M. Kulldorff, J. J. Hartman, J. R. Miller, and V. Kulasekera, “Dead bird clusters as an early warning system for West Nile virus activity,” Emerging Infectious Diseases, vol. 9, no. 6, pp. 641–646, 2003. View at Google Scholar · View at Scopus
  13. R. J. Eisen, R. S. Lane, C. L. Fritz, and L. Eisen, “Spatial patterns of lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure,” American Journal of Tropical Medicine and Hygiene, vol. 75, no. 4, pp. 669–676, 2006. View at Google Scholar · View at Scopus
  14. S. G. Jones, W. Conner, B. Song, D. Gordon, and A. Jayakaran, “Comparing spatio-temporal clusters of arthropod-borne infections using administrative medical claims and state reported surveillance data,” Spatial and Spatio-Temporal Epidemiology, vol. 3, no. 3, pp. 205–213, 2012. View at Publisher · View at Google Scholar
  15. S. G. Jones and M. Kulldorff, “Influence of spatial resolution on space-time disease cluster detection,” PLoS ONE. In press, http://dx.plos.org/10.1371/journal.pone.0048036. 2012.
  16. J. Wieczorek, Q. Guo, and R. J. Hijmans, “The point-radius method for georeferencing locality descriptions and calculating associated uncertainty,” International Journal of Geographical Information Science, vol. 18, no. 8, pp. 745–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Bissonette, “Small sample size problems in wildlife ecology: a contingent analytical approach,” Wildlife Biology, vol. 5, no. 2, pp. 65–71, 1999. View at Google Scholar · View at Scopus
  18. S. G. Jones, S. Coulter, and W. Conner, “Using administrative medical claims data to supplement state disease registry systems for reporting zoonotic infections,” Journal of American Medical Informatics Association. In press. View at Publisher · View at Google Scholar
  19. Tennessee Wildlife Resources Agency, Tennessee Land Use/Land Cover Landsat TM imagery, Tennessee Spatial Data Service metadata files, http://www.tngis.org/frequently_accessed_data.html, 1997.
  20. L. Cowardin, V. Carter, E. Golet, and E. LaRoe, “Classification of wetlands and deepwater habitats of the United States,” US Fish and Wildlife Service FWS/OBS 79/31, 1979. View at Google Scholar
  21. M. Efroymson, “Multiple regression analysis,” in Mathematical Methods for Digital Computers, A. Ralston and H. S. Wilf, Eds., chapter 17, Wiley, New York, NY, USA, 1960. View at Google Scholar
  22. L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Wadsworth International Group, Belmont, Calif, USA, 1984.
  23. B. De Ville, Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner, SAS Publishing, Cary, NC, USA, 2006.
  24. J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001. View at Google Scholar · View at Scopus
  26. J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics and Data Analysis, vol. 38, no. 4, pp. 367–378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Lapedes and R. Farber, “Nonlinear signal processing using neural networks: prediction and system modeling,” Tech. Rep. LA-UR87-2662, Los Alamos National Laboratory, Los Alamos, NM, USA, 1987. View at Google Scholar
  28. SAS Institute Inc, SAS Enterprise Miner 6.1: Single-User Installation Guide, SAS Institute Inc, Cary, NC, USA, 2009.
  29. R. Wall and P. Cunningham, “Exploring the potential for rule extraction from ensembles of neural networks,” in Proceedings of the 11th Irish Conference on Artificial Intelligence and Cognitive Science, J. Griffith and C. O'Riordan, Eds., Computer Science Technical Report TCD-CS-2000-24, pp. 52–68, Trinity College, Dublin, Ireland, 2000.
  30. A. C. Steere, S. E. Malawista, D. R. Snydman et al., “Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities.,” Arthritis and Rheumatism, vol. 20, no. 1, pp. 7–17, 1977. View at Google Scholar · View at Scopus
  31. G. O. Maupin, D. Fish, J. Zultowsky, E. G. Campos, and J. Piesman, “Landscape ecology of Lyme disease in a residential area of Westchester County, New York,” American Journal of Epidemiology, vol. 133, no. 11, pp. 1105–1113, 1991. View at Google Scholar · View at Scopus
  32. R. G. McLean, S. R. Ubico, C. A. N. Hughes, S. M. Engstrom, and R. C. Johnson, “Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley,” Journal of Clinical Microbiology, vol. 31, no. 8, pp. 2038–2043, 1993. View at Google Scholar · View at Scopus
  33. H. S. Ginsberg, P. A. Buckley, M. G. Balmforth, E. Zhioua, S. Mitra, and F. G. Buckley, “Reservoir competence of native North American birds for the lyme disease spirochete, Borrelia burgdorferi,” Journal of Medical Entomology, vol. 42, no. 3, pp. 445–449, 2005. View at Google Scholar · View at Scopus
  34. N. H. Ogden, R. L. Lindsay, K. Hanincová et al., “Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada,” Applied and Environmental Microbiology, vol. 74, no. 12, pp. 3919–3919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Magnarelli, A. Denicola, K. C. Stafford, and J. F. Anderson, “Borrelia burgdorferi in an urban environment: white-tailed deer with infected ticks and antibodies,” Journal of Clinical Microbiology, vol. 33, no. 3, pp. 541–544, 1995. View at Google Scholar · View at Scopus
  36. R. G. Wilkinson and K. E. Pickett, “Income inequality and population health: a review and explanation of the evidence,” Social Science and Medicine, vol. 62, no. 7, pp. 1768–1784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Lusardi, D. Schneider, and P. Tufano, “The economic crisis and medical care usage. Harvard business school,” Working Paper 10-079, 2010. View at Google Scholar
  38. Q. H. Liu, G. Y. Chen, Y. Jin et al., “Evidence for a high prevalence of spotted fever group rickettsial infections in diverse ecologic zones of Inner Mongolia,” Epidemiology and Infection, vol. 115, no. 1, pp. 177–183, 1995. View at Google Scholar · View at Scopus
  39. P. Parola and D. Raoult, “Ticks and tickborne bacterial diseases in humans: an emerging infectious threat,” Clinical Infectious Diseases, vol. 32, no. 6, pp. 897–928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. E. J. Masters, G. S. Olson, S. J. Weiner, and C. D. Paddock, “Rocky Mountain spotted fever: a clinician's dilemma,” Archives of Internal Medicine, vol. 163, no. 7, pp. 769–774, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. G. Helmick, K. W. Bernard, and L. J. D'Angelo, “Rocky Mountain spotted fever: clinical, laboratory, and epidemiological features of 262 cases,” Journal of Infectious Diseases, vol. 150, no. 4, pp. 480–488, 1984. View at Google Scholar · View at Scopus