Table of Contents
ISRN Analytical Chemistry
Volume 2012 (2012), Article ID 132543, 5 pages
http://dx.doi.org/10.5402/2012/132543
Research Article

Nuclear Magnetic Resonance Analysis of Glucose Levels in Weanling Piglets Plasma as a Function of Deoxynivalenol Exposure

1School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
2Molecular Epidemiology Unit, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
3INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France
4MIAEH, School of Public Health, University of Maryland, College Park, MD, USA

Received 30 August 2012; Accepted 16 October 2012

Academic Editors: P. Campíns-Falcó, T. Macko, and A. Tsantili-Kakoulidou

Copyright © 2012 Richard P. Hopton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. CAST. Council for Agricultural Science and Technology, “Potential economic costs of mycotoxins in the United States,” in Mycotoxins: Risks in Plant, Animal and Human Systems, Task Force Report No. 139, pp. 136–142, Ames, Iowa, USA, 2003. View at Google Scholar
  2. SCOOP, In Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states. SCOOP Task 3. 2. 10 Final report, 2003, http://ec.europa.eu/food/fs/scoop/task3210.pdf.
  3. L. S. Jackson and L. B. Bullerman, “Effect of processing on Fusarium mycotoxins,” Advances in Experimental Medicine and Biology, vol. 459, pp. 243–261, 1999. View at Google Scholar · View at Scopus
  4. Y. Sugita-Konsihi, T. Tanaka, S. Tabata et al., “Validation of an HPLC analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol,” Mycopathologia, vol. 161, no. 4, pp. 239–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. SCF, Opinion of the Scientific Committee on Food on Fusarium toxins. Part 6: Group evaluation of T-2 toxin, HT-2 toxin, nivalenol and deoxynivalenol: SCF/CS/CNTM/MYC/27 Final, 2002, http://ec.europa.eu/food/fs/sc/scf/out123_en.pdf.
  6. J. J. Pestka and A. T. Smolinski, “Deoxynivalenol: toxicology and potential effects on humans,” Journal of Toxicology and Environmental Health B, vol. 8, no. 1, pp. 39–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. C. Turner, R. P. Hopton, Y. Lecluse, K. L. M. White, J. Fisher, and P. Lebailly, “Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from normandy, France,” Journal of Agricultural and Food Chemistry, vol. 58, no. 8, pp. 5206–5212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. C. Turner, “Deoxynivalenol and nivalenol occurrence and exposure assessment,” World Mycotoxin Journal, vol. 3, no. 4, pp. 315–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Sundstøl Eriksen and H. Pettersson, “Lack of de-epoxidation of type B trichothecenes in incubates with human faeces,” Food Additives & Contaminants, vol. 20, no. 6, pp. 579–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Hepworth, L. J. Hardie, L. K. Fraser et al., “Deoxynivalenol exposure assessment in a cohort of pregnant women from Bradford, UK,” Food Additives & Contaminants A, vol. 29, no. 2, pp. 269–276, 2012. View at Google Scholar
  11. P. C. Turner, R. P. Hopton, K. L. M. White, J. Fisher, J. E. Cade, and C. P. Wild, “Assessment of deoxynivalenol metabolite profiles in UK adults,” Food and Chemical Toxicology, vol. 49, no. 1, pp. 132–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. P. Hopton, E. Turner, V. J. Burley, P. C. Turner, and J. Fisher, “Urine metabolite analysis as a function of deoxynivalenol exposure: an NMR-based metabolomics investigation,” Food Additives & Contaminants A, vol. 27, no. 2, pp. 255–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nogueira da Costa, R. S. Mijal, J. N. Keen, J. B. C. Findlay, and C. P. Wild, “Proteomic analysis of the effects of the immunomodulatory mycotoxin deoxynivalenol,” Proteomics, vol. 11, no. 10, pp. 1903–1914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Nogueira da Costa, J. N. Keen, C. P. Wild, and J. B. C. Findlay, “An analysis of the phosphoproteome of immune cell lines exposed to the immunomodulatory mycotoxin deoxynivalenol,” Biochimica et Biophysica Acta, vol. 1814, no. 7, pp. 850–857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. W. A. Awad, J. R. Aschenbach, F. M. C. S. Setyabudi, E. Razzazi-Fazeli, J. Böhm, and J. Zentek, “In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens,” Poultry Science, vol. 86, no. 1, pp. 15–20, 2007. View at Google Scholar · View at Scopus
  16. W. A. Awad, E. Razzazi-Fazeli, J. Böhm, and J. Zentek, “Effects of B-trichothecenes on luminal glucose transport across the isolated jejunal epithelium of broiler chickens,” Journal of Animal Physiology and Animal Nutrition, vol. 92, no. 3, pp. 225–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Pinton, F. Accensi, E. Beauchamp et al., “Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses,” Toxicology Letters, vol. 177, no. 3, pp. 215–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Accensi, P. Pinton, P. Callu et al., “Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets,” Journal of Animal Science, vol. 84, no. 7, pp. 1935–1942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. C. Turner, V. J. Burley, J. A. Rothwell, K. L. M. White, J. E. Cade, and C. P. Wild, “Dietary wheat reduction decreases the level of urinary deoxynivalenol in UK adults,” Journal of Exposure Science and Environmental Epidemiology, vol. 18, no. 4, pp. 392–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. K. Nicholson, P. J. D. Foxall, M. Spraul, R. D. Farrant, and J. C. Lindon, “750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma,” Analytical Chemistry, vol. 67, no. 5, pp. 793–811, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Zerull, G. Breves, B. Schroder, T. Goyarts, and S. Danicke, “The influence of the mycotoxin deoxynivalenol on jejunal glucose transport in pigs,” Mycotoxin Research, vol. 21, no. 4, pp. 251–257, 2005. View at Publisher · View at Google Scholar
  22. K. Szkudelska, T. Szkudelski, and L. Nogowski, “Short-time deoxynivalenol treatment induces metabolic disturbances in the rat,” Toxicology Letters, vol. 136, no. 1, pp. 25–31, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. F. A. Meky, P. C. Turner, A. E. Ashcroft et al., “Development of a urinary biomarker of human exposure to deoxynivalenol,” Food and Chemical Toxicology, vol. 41, no. 2, pp. 265–273, 2003. View at Publisher · View at Google Scholar · View at Scopus