Table of Contents
ISRN Neurology
Volume 2012, Article ID 134289, 11 pages
Review Article

Role of Vitamin D in Parkinson’s Disease

Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA

Received 18 October 2011; Accepted 29 November 2011

Academic Editors: M.-C. Chartier-Harlin, S. Lorenzl, and G. Meco

Copyright © 2012 Khanh Lương and Lan Nguyễn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Parkinson’s disease (PD) is the second most common form of neurodegeneration in the elderly population. Clinically, it is characterized by tremor, rigidity, slowness of movement, and postural imbalance. A significant association between low serum vitamin D and PD has been demonstrated, suggesting that elevated vitamin D levels might provide protection against PD. Genetic studies have helped identify a number of proteins linking vitamin D to PD pathology, including the major histocompatibility complex (MHC) class II, the vitamin D receptor (VDR), cytochrome P450 2D6 (CYP2D6), chromosome 22, the renin-angiotensin system (RAS), heme oxygenase-1 (HO-1), poly(ADP-ribose) polymerase-1 gene (PARP-1), neurotrophic factor (NTF), and Sp1 transcription factor. Vitamin D has also been implicated in PD through its effects on L-type voltage-sensitive calcium channels (L-VSCC), nerve growth factor (NGF), matrix metalloproteinases (MMPs), prostaglandins (PGs) and cyclooxygenase-2 (COX-2), reactive oxygen species (ROS), and nitric oxide synthase (NOS). A growing body of evidence suggests that vitamin D supplementation may be beneficial for PD patients. Among the different forms of vitamin D, calcitriol (1,25-dihydroxyvitamin D3) is best indicated for PD, because it is a highly active vitamin D3 metabolite with an appropriate receptor in the central nervous system (CNS).