ISRN Computational Mathematics

Volume 2012 (2012), Article ID 138718, 3 pages

http://dx.doi.org/10.5402/2012/138718

## Solution of Wave Equation in Radial Form by VIM

Department of Applied Mathematics, School of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht 41938, Iran

Received 23 December 2011; Accepted 1 February 2012

Academic Editors: G. Bella and E. Weber

Copyright © 2012 Hossein Aminikhah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

An analytic approximation to the solution of wave equation is studied. Wave equation is in radial form with indicated initial and boundary conditions, by variational iteration method it has been used to derive this approximation and some examples are presented to show the simplicity and efficiency of the method.

#### 1. Introduction

Wave equation has attracted much attention and solving these kind of equations has been one of the interesting tasks for mathematicians. Variational iteration method is known as a powerful device for solving functional equations [1–7]. Numerical methods which are commonly used as finite-difference methods and characteristics method need large size of computational works and usually the effect of round-off error causes the loss of accuracy in the results. Analytical methods commonly used for solving wave equation are very restricted and can be used in special cases, so they cannot be used to solve equations resulted by mathematical modeling of numerous realistic scenarios. In this article, the variational iteration method has been applied to solve more general forms of wave equation.

#### 2. He’s Variational Iteration Method

The variational iteration method [8–13], which is a modified of general Lagrange multiplier method [14], has been shown to solve effectively, easily, and accurately large class of nonlinear problems with approximations which converge rapidly to accurate solutions. To illustrate the method, consider the following nonlinear equation: where is a linear operator, is a nonlinear operator, and is a known analytic function. According to the variational iteration method, we can construct the following correction functional: where is general Lagrange multiplier which can be identified via variational theory, is an initial approximation with possible unknowns, and is considered as restricted variation [15] (i.e., ). Therefore, we first determine the Lagrange multiplier that will be identified optimally via integration by parts. The successive approximations of the solution will be readily obtained upon using the obtained Lagrange multiplier and by using any selective function . Consequently, the exact solution may be obtained by .

#### 3. Numerical Results

To illustrate the method and to show ability of the method, some examples are presented.

*Example 1. *Let us have one-dimensional wave equation in radial form with initial condition:
Its correction functional can be expressed as follows:
To make this correct functional stationary, ,
Its stationary conditions can be obtained as follows:
from which Lagrange multiplier can be identified as , and the following iteration formula will be obtained:
Beginning with , by iteration formula (7), we have
from which the general term and so the solution will be determined as follows:

*Example 2. *Let us solve two-dimensional wave equation in radial form with the boundary conditions:
Its correction functional can be expressed as follows:
Making the above correct functional stationary, notice that :
Its stationary conditions can be obtained as follows:
from which the Lagrange multiplier would be identified as follows:
Substituting (14) into (11) leads to the following iteration formula:
Starting with
we have
Imposing the boundary conditions yields to , , .

Thus, we have
which is an exact solution.

*Example 3. *Consider Example 1 with boundary conditions following:
Similar to Example 2, the Lagrange multiplier can be identified as and the following iteration formula will be obtained:
Starting with
by iteration formula (20), we have
which is an exact solution.

#### 4. Conclusion

In this work, we present an analytical approximation to the solution of wave equation in radial form in different cases. We have achieved this goal by applying variational iteration method. The small size of computations in comparison with the computational size required in numerical methods and the rapid convergence shows that the variational iteration method is reliable and introduces a significant improvement in solving the wave equation over existing methods. The main advantage of the VIM over A.D.M. is that this method provides the solution without a need for calculating Adomian’s polynomials [16].

#### References

- A. Yildirim, S. T. Mohyud-Din, and D. H. Zhang, “Analytical solutions to the pulsed Klein-Gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES),”
*Computers and Mathematics with Applications*, vol. 59, no. 8, pp. 2473–2477, 2010. View at Publisher · View at Google Scholar · View at Scopus - A. Yildirim and T. Öziş, “Solutions of singular IVPs of Lane-Emden type by the variational iteration method,”
*Nonlinear Analysis, Theory, Methods and Applications*, vol. 70, no. 6, pp. 2480–2484, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - S. Momani and S. Abuasad, “Application of He's variational iteration method to Helmholtz equation,”
*Chaos, Solitons and Fractals*, vol. 27, no. 5, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus - M. A. Abdou and A. A. Soliman, “Variational iteration method for solving Burger's and coupled Burger's equations,”
*Journal of Computational and Applied Mathematics*, vol. 181, no. 2, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus - J. Biazar and H. Ghazvini, “He's variational iteration method for fourth-order parabolic equations,”
*Computers and Mathematics with Applications*, vol. 54, no. 7-8, pp. 1047–1054, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus - J. Biazar and H. Ghazvini, “He's variational iteration method for solving hyperbolic differential equations,”
*International Journal of Nonlinear Sciences and Numerical Simulation*, vol. 8, no. 3, pp. 311–314, 2007. View at Google Scholar · View at Scopus - J. Biazar and H. Ghazvini, “He's variational iteration method for solving linear and non-linear systems of ordinary differential equations,”
*Applied Mathematics and Computation*, vol. 191, no. 1, pp. 287–297, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - J. H. He, “Some asymptotic methods for strongly nonlinear equations,”
*International Journal of Modern Physics B*, vol. 20, no. 10, pp. 1141–1199, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 167, no. 1-2, pp. 57–68, 1998. View at Google Scholar · View at Scopus - J. H. He, “Variational iteration method for autonomous ordinary differential systems,”
*Applied Mathematics and Computation*, vol. 114, no. 2-3, pp. 115–123, 2000. View at Google Scholar · View at Scopus - J. He, “A new approach to nonlinear partial differential equations,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 2, no. 4, pp. 230–235, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - J. H. He, “A variational iteration approach to nonlinear problems and its applications,”
*Mechanical Application*, vol. 20, no. 1, pp. 30–31, 1998. View at Google Scholar - J. H. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,”
*International Journal of Non-Linear Mechanics*, vol. 34, no. 4, pp. 699–708, 1999. View at Google Scholar · View at Scopus - M. Inokuti et al., “General use of the Lagrange multiplier in nonlinear mathematical physics,” in
*Variational Method in the Mechanics of Solids Pergamon Press*, S. N. Nasser, Ed., pp. 156–162, 1978. View at Google Scholar - B. A. Finlayson,
*The Method of Weighted Residuals and Variational Principles*, Academic Press, 1972. - J. Biazar and R. Islam, “Solution of wave equation by Adomian decomposition method and the restrictions of the method,”
*Applied Mathematics and Computation*, vol. 149, no. 3, pp. 807–814, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus