Table of Contents
ISRN Bioinformatics
Volume 2012 (2012), Article ID 139842, 5 pages
http://dx.doi.org/10.5402/2012/139842
Research Article

Bio301: A Web-Based EST Annotation Pipeline That Facilitates Functional Comparison Studies

1Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
2Department of Biomedical Engineering, The Whitaker Biomedical Engineering Institute at Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
3Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
4Department of Bioscience Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li City 32073, Taiwan
5Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan

Received 25 July 2011; Accepted 5 September 2011

Academic Editors: Q. Dong and A. Lukas

Copyright © 2012 Yen-Chen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Adams, J. M. Kelley, J. D. Gocayne et al., “Complementary DNA sequencing: expressed sequence tags and human genome project,” Science, vol. 252, no. 5013, pp. 1651–1656, 1991. View at Google Scholar · View at Scopus
  2. E. D. Neto, R. G. Correa, S. Verjovski-Almeida et al., “Shotgun sequencing of the human transcriptome with ORF expressed sequence tags,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3491–3496, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Hillier, G. Lennon, M. Becker et al., “Generation and analysis of 280,000 human expressed sequence tags,” Genome Research, vol. 6, no. 9, pp. 807–828, 1996. View at Google Scholar · View at Scopus
  4. T. G. Wolfsberg and D. Landsman, “Expressed sequence tags (ESTs),” in Bioinformatics, A. D. Bax-Evanis and B. F. F. Ouellette, Eds., pp. 283–301, John Wiley & Sons, New York, NY, USA, 2001. View at Google Scholar
  5. G. Pertea, X. Huang, F. Liang et al., “TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets,” Bioinformatics, vol. 19, no. 5, pp. 651–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Waegele, T. Schmidt, H. W. Mewes, and A. Ruepp, “OREST: the online resource for EST analysis,” Nucleic Acids Research, vol. 36, pp. W140–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Kim, S. Shin, and S. Lee, “ECgene: genome-based EST clustering and gene modeling for alternative splicing,” Genome Research, vol. 15, no. 4, pp. 566–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Kent, “BLAT—the BLAST-like alignment tool,” Genome Research, vol. 12, no. 4, pp. 656–664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. H. Lee et al., “A novel tool for annotating protein domains in expressed sequence tags,” in Proceedings of the IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, D. Ashlock, Ed., pp. 422–427, Toronto, Canada, September 2006.
  11. R. Apweiler, T. K. Attwood, A. Bairoch et al., “The InterPro database, an integrated documentation resource for protein families, domains and functional sites,” Nucleic Acids Research, vol. 29, no. 1, pp. 37–40, 2001. View at Google Scholar · View at Scopus
  12. W. J. Conover, Practical Nonparameteric Statistics, John Wiley & Sons, New York, NY, USA, 1999.
  13. R. Schmid and M. L. Blaxter, “annot8r: GO, EC and KEGG annotation of EST datasets,” BMC Bioinformatics, vol. 9, article 180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Tang, J. H. Choi, C. Hemmerich, A. Sarangi, J. K. Colbourne, and Q. Dong, “ESTPiper—a web-based analysis pipeline for expressed sequence tags,” BMC Genomics, vol. 10, article 174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Forment, F. Gilabert, A. Robles, V. Conejero, F. Nuez, and J. M. Blanca, “EST2uni: an open, parallel tool for automated EST analysis and database creation, with a data mining web interface and microarray expression data integration,” BMC Bioinformatics, vol. 9, article 5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Chen, W. Wang, X. B. Ling, J. J. Liu, and L. Chen, “GO-Diff: mining functional differentiation between EST-based transcriptomes,” BMC Bioinformatics, vol. 7, article 72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Montreuil and R. Jouvent, “Bibliometric modeling processes and the empirical validity of Lotka's law,” Journal of the American Society for Information Science, vol. 40, pp. 379–385, 1989. View at Google Scholar
  18. P. P. Hwang and T. H. Lee, “New insights into fish ion regulation and mitochondrion-rich cells,” Comparative Biochemistry and Physiology—A Molecular and Integrative Physiology, vol. 148, no. 3, pp. 479–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Hagen-Larsen, J. K. Laerdahl, F. Panitz, A. Adzhubei, and B. Høyheim, “An EST-based approach for identifying genes expressed in the intestine and gills of pre-smolt Atlantic salmon (Salmo salar),” BMC Genomics, vol. 6, article 171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Putta, J. J. Smith, J. A. Walker et al., “From biomedicine to natural history research: EST resources for ambystomatid salamanders,” BMC Genomics, vol. 5, article 54, 2004. View at Publisher · View at Google Scholar · View at Scopus