Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 142857, 13 pages
http://dx.doi.org/10.5402/2012/142857
Review Article

Tin-Catalyzed Esterification and Transesterification Reactions: A Review

Chemistry Department, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil

Received 17 April 2012; Accepted 5 September 2012

Academic Editors: B. Chen, K. T. Lee, and Y.-C. Lin

Copyright © 2012 Arthur Batista Ferreira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Demirbas, “Political, economic and environmental impacts of biofuels: a review,” Applied Energy, vol. 86, no. 1, pp. S108–S117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Kiss, A. C. Dimian, and G. Rothenberg, “Biodiesel by catalytic reactive distillation powered by metal oxides,” Energy and Fuels, vol. 22, no. 1, pp. 598–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Demirbas, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats,” Energy Conversion and Management, vol. 49, no. 1, pp. 125–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Maeda, L. T. Thanh, K. Imamura et al., “New technology for the production of biodiesel fuel,” Green Chemistry, vol. 13, no. 5, pp. 1124–1128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Haas, “Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock,” Fuel Processing Technology, vol. 86, no. 10, pp. 1087–1096, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, and H. Bandow, “A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel,” Bioresource Technology, vol. 101, no. 14, pp. 5394–5401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Cho, D. T. Kim, H.-J. Choi, T.-J. Kim, and S. C. Shim, “Catalytic activity of tin(II) chloride in esterification of carboxylic acids with alcohols,” Bulletin of the Korean Chemical Society, vol. 23, no. 4, pp. 539–540, 2002. View at Google Scholar · View at Scopus
  8. A. L. Cardoso, S. C. G. Neves, and M. J. da Silva, “Kinetic study of alcoholysis of the fatty acids catalyzed by tin chloride(II): an alternative catalyst for biodiesel production,” Energy and Fuels, vol. 23, no. 3, pp. 1718–1722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Cardoso, S. C. G. Neves, and M. J. da Silva, “Esterification of oleic acid for biodiesel production catalyzed by SnCl2: a kinetic investigation,” Energies, vol. 1, no. 2, pp. 79–92, 2008. View at Publisher · View at Google Scholar
  10. A. L. Cardoso, R. Natalino, and M. J. da Silva, “Bioenrgy II: tin catalysed esterification of free fatty acids,” International Journal of Chemical Reactor Engineering, vol. 8, no. 1, pp. 1–12, 2010. View at Google Scholar · View at Scopus
  11. F. R. Abreu, D. G. Lima, E. H. Hamú, C. Wolf, and P. A. Z. Suarez, “Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols,” Journal of Molecular Catalysis A, vol. 209, no. 1-2, pp. 29–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. C. Ferreira, M. R. Meneghetti, S. M. P. Meneghetti, and C. R. Wolf, “Methanolysis of soybean oil in the presence of tin(IV) complexes,” Applied Catalysis A, vol. 317, no. 1, pp. 58–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. de Mendonça, J. P. V. da Silva, R. M. de Almeida, C. R. Wolf, M. R. Meneghetti, and S. M. P. Meneghetti, “Transesterification of soybean oil in the presence of diverse alcoholysis agents and Sn(IV) organometallic complexes as catalysts, employing two different types of reactors,” Applied Catalysis A, vol. 365, no. 1, pp. 105–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Einloft, T. O. Magalhães, A. Donato, J. Dullius, and R. Ligabue, “Biodiesel from rice bran oil: transesterification by tin compounds,” Energy and Fuels, vol. 22, no. 1, pp. 671–674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. M. Serra, D. R. de Mendona, J. P. V. da Silva, M. R. Meneghetti, and S. M. P. Meneghetti, “Comparison of soybean oil and castor oil methanolysis in the presence of tin(IV) complexes,” Fuel, vol. 90, no. 6, pp. 2203–2206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Corma and H. García, “Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis,” Chemical Reviews, vol. 103, no. 11, pp. 4307–4365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Haas, K. M. Scott, W. N. Marmer, and T. A. Foglia, “The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks,” Journal of the American Oil Chemists' Society, vol. 84, no. 10, pp. 963–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. da Silva, C. E. Gonçalves, and L. O. Laier, “Novel esterification of glycerol catalysed by tin chloride (II): a recyclable and less corrosive process for production of bio-additives,” Catalysis Letters, vol. 141, no. 8, pp. 1111–1117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Narasimharao, A. Lee, and K. Wilson, “Catalysts in production of biodiesel: a review,” Journal of Biobased Materials and Bioenergy, vol. 1, no. 1, pp. 19–30, 2007. View at Google Scholar
  20. A. L. Cardoso, R. Augusti, and M. J. da Silva, “Investigation on the esterification of fatty acids catalyzed by the H3PW12O40 heteropolyacid,” Journal of the American Oil Chemists' Society, vol. 85, no. 6, pp. 555–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Berrios, J. Siles, M. A. Martín, and A. Martín, “A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil,” Fuel, vol. 86, no. 15, pp. 2383–2388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-Y. Park, Z.-M. Wang, D.-K. Kim, and J.-S. Lee, “Effects of water on the esterification of free fatty acids by acid catalysts,” Renewable Energy, vol. 35, no. 3, pp. 614–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. L. da Silva, A. P. Figueiredo, A. L. Cardoso, R. Natalino, and M. J. da Silva, “Effect of water on the ethanolysis of waste cooking soybean oil using a tin(II) chloride catalyst,” Journal of the American Oil Chemists' Society, vol. 88, no. 9, pp. 1431–1437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Srivastava and R. Prasad, “Triglycerides-based diesel fuels,” Renewable & Sustainable Energy Reviews, vol. 4, no. 2, pp. 111–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Freedman, R. O. Butterfield, and E. H. Pryde, “Transesterification kinetics of soybean oil,” Journal of the American Oil Chemists' Society, vol. 63, no. 10, pp. 1375–1380, 1986. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Canakci and J. Van Gerpen, “Biodiesel production via acid catalysis,” Transactions of the American Society of Agricultural Engineers, vol. 42, no. 5, pp. 1203–1210, 1999. View at Google Scholar · View at Scopus
  27. F. R. Abreu, D. G. Lima, E. H. Hamú, S. Einloft, J. C. Rubim, and P. A. Z. Suarez, “New metal catalysts for soybean oil transesterification,” Journal of the American Oil Chemists' Society, vol. 80, no. 6, pp. 601–604, 2003. View at Google Scholar · View at Scopus
  28. A. B. de Oliveira, I. F. Jorge, P. A. Z. Suarez, N. R. de S. Basso, and S. Einloft, “Synthesis and characterization of new bivalent tin chelate of 3-hydroxy-2-methyl-4-pyrone and its use as catalyst for polyesterification,” Polymer Bulletin, vol. 45, no. 4-5, pp. 341–344, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Casas, M. J. Ramos, J. F. Rodríguez, and Á. Pérez, “Tin compounds as Lewis acid catalysts for esterification and transesterification of acid vegetable oils,” Fuel Processing Technology. In press.
  30. Technical information: bulletin 345 revision 3/91, bulletin 346 revision 7/92 and bulletin 362 revision 10/93, Elf Atochem North America, Inc.
  31. Technical information: bulletin LIOCAT 118 revision 08/99, Miracema-Nuodex Ind. Química Ltda.
  32. H. Noureddini and D. Zhu, “Kinetics of transesterification of soybean oil,” Journal of the American Oil Chemists' Society, vol. 74, no. 11, pp. 1457–1463, 1997. View at Google Scholar · View at Scopus
  33. F. R. Abreu, D. G. Lima, E. H. Hamú, C. Wolf, and P. A. Z. Suarez, “Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols,” Journal of Molecular Catalysis A, vol. 209, no. 1-2, pp. 29–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. C. Brito, D. A. C. Ferreira, D. M. de A. Fragoso et al., “Simultaneous conversion of triacylglycerides and fatty acids into fatty acid methyl esters using organometallic tin(IV) compounds as catalysts,” Applied Catalysis A, vol. 443-444, pp. 202–206, 2012. View at Publisher · View at Google Scholar