Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 143613, 12 pages
http://dx.doi.org/10.5402/2012/143613
Research Article

An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4

Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia

Received 24 April 2012; Accepted 7 June 2012

Academic Editors: Q. Chen and J. Ding

Copyright © 2012 Boris A. Katsnelson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm, “Nanotoxicology,” Occupational and Environmental Medicine, vol. 61, no. 9, pp. 727–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. G. Bastús, E. Casals, S. Vázquez-Campos, and V. Puntes, “Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media,” Nanotoxicology, vol. 2, no. 3, pp. 99–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Li, T. Xia, and A. E. Nel, “The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles,” Free Radical Biology and Medicine, vol. 44, no. 9, pp. 1689–1699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. B. Warheit, K. L. Reed, and C. M. Sayes, “A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity,” Nanotoxicology, vol. 3, no. 3, pp. 181–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. B. Warheit, T. R. Webb, V. L. Colvin, K. L. Reed, and C. M. Sayes, “Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics,” Toxicological Sciences, vol. 95, no. 1, pp. 270–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Möller, “Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size,” Toxicology Letters, vol. 188, no. 2, pp. 112–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Yokel and R. C. MacPhail, “Engineered nanomaterials: exposures, hazards, and risk prevention,” Journal of Occupational Medicine and Toxicology, vol. 6, no. 1, article 7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Murashov, P. Schulte, C. Geraci, and J. Howard, “Regulatory approaches to worker protection in nanotechnology industry in the USA and European union,” Industrial Health, vol. 49, no. 3, pp. 280–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Groso, A. Petri-Fink, A. Magrez, M. Riediker, and T. Meyer, “Management of nanomaterials safety in research environment,” Particle and Fibre Toxicology, vol. 7, Article ID 40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. van Broekhuizen, “Dealing with uncertainties in the nanotech workplace practice: making the precautionary approach operational,” Journal of Biomedical Nanotechnology, vol. 7, no. 1, pp. 15–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. A. Katsnelson and L. I. Privalova, “Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles,” Environmental Health Perspectives, vol. 55, pp. 313–325, 1984. View at Google Scholar · View at Scopus
  13. L. I. Privalova, B. A. Katsnelson, and A. B. Osipenko, “Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity,” Environmental Health Perspectives, vol. 35, pp. 205–218, 1980. View at Google Scholar · View at Scopus
  14. L. I. Privalova, B. A. Katsnelson, and L. N. Yelnichnykh, “Some peculiarities of the pulmonary phagocytotic response: dust retention kinetics and silicosis development during long term exposure of rats to high quartz dust levels,” British Journal of Industrial Medicine, vol. 44, no. 4, pp. 228–235, 1987. View at Google Scholar · View at Scopus
  15. L. I. Privalova, B. A. Katsnelson, N. Y. Sharapova, and N. S. Kislitsina, “On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (An overview),” Medicina del Lavoro, vol. 86, no. 6, pp. 511–521, 1995. View at Google Scholar · View at Scopus
  16. B. A. Katsnelson, L. K. Konyscheva, N. Y. Sharapova, and L. I. Privalova, “Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model,” Occupational and Environmental Medicine, vol. 51, no. 3, pp. 173–180, 1994. View at Google Scholar · View at Scopus
  17. B. A. Katsnelson, O. G. Alekseyeva, L. I. Privalova, and E. V. Polzik, Pneumoconioses: The Pathogenesis and Biological Prophylaxis, The Urals Division of the RAS, Ekaterinburg, Russia, 1995.
  18. B. A. Katsnelson, L. K. Konysheva, L. I. Privalova, and N. Y. Sharapova, “Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: further evidence of the key role of the cytotoxicity of quartz particles,” Inhalation Toxicology, vol. 9, no. 8, pp. 703–715, 1997. View at Google Scholar · View at Scopus
  19. B. Katsnelson, L. I. Privalova, S. V. Kuzmin et al., “Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: are we defenseless against nanoparticles?” International Journal of Occupational and Environmental Health, vol. 16, no. 4, pp. 508–524, 2010. View at Google Scholar · View at Scopus
  20. K. H. Kilburn, “Alveolar clearance of particles. A bullfrog lung model,” Archives of Environmental Health, vol. 18, no. 4, pp. 556–563, 1969. View at Google Scholar · View at Scopus
  21. B. A. Katsnelson, T. D. Degtyareva, I. I. Minigalieva et al., “Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats,” International Journal of Toxicology, vol. 30, no. 1, pp. 59–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Katsnelson, L. I. Privalova, M. P. Sutunkova et al., “The “in vivo” interaction between iron oxide Fe3O4 nanoparticles and alveolar macrophages,” Bulletin of Experimental Biology and Medicine, vol. 152, no. 5, pp. 627–631, 2012. View at Google Scholar
  23. B. A. Katsnelson, L. I. Privalova, and M. P. Sutunkova, “Uptake of some metallic nanoparticles by, and their impact on pulmonary macrophages in vivo as viewed by optical, atomic force, and transmission electron microscopy,” Journal of Nanomedicine & Nanotechnology, vol. 3, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  24. L. M. Petin, “Establishment of the maximum permissible concentrations of silica-containing condensation aerosols,” Meditsina Truda I Promyshlennaya Ekologiya, no. 6, pp. 28–33, 1978. View at Google Scholar · View at Scopus
  25. E. Ying and H. M. Hwang, “In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes,” Science of the Total Environment, vol. 408, no. 20, pp. 4475–4481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. C. Allison, “Lysosomes and the toxicity of particulate pollutants,” Archives of Internal Medicine, vol. 128, no. 1, pp. 131–139, 1971. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Tsuchiya, N. Nitta, A. Sonoda et al., “Histological study of the biodynamics of iron oxide nanoparticles with different diameters,” International Journal of Nanomedicine, vol. 6, pp. 1587–1594, 2011. View at Google Scholar · View at Scopus
  28. CDC and NIOSH, Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide, US Department of Health and Human Services, NIOSH, 2011.
  29. Safe Work Australia, Engineered Nanomaterials: Feasibility of establishing exposure standards and using control banding in Australia, 2010.