Table of Contents
ISRN Analytical Chemistry
Volume 2012 (2012), Article ID 153081, 9 pages
http://dx.doi.org/10.5402/2012/153081
Review Article

Evaluation of the Pollution by Toxic Elements around the Small-Scale Mining Area, Boroo, Mongolia

1School of Chemistry and Chemical Engineering, National University of Mongolia, University Street 1, Ulaanbaatar 14201, Mongolia
2Graduate School of Urban Environmental Science, Tokyo Metropolitan University 1-1, Minami-Oosawa, Hachioji-shi, Tokyo 192-039, Japan
3Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
4Institute of Geography, Mongolian Academy of Sciences, Ulaanbaatar 14192, Mongolia

Received 27 January 2012; Accepted 15 March 2012

Academic Editors: B. J. Birch, A. Lewenstam, S. Polesello, and A. Szemik-Hojniak

Copyright © 2012 Bolormaa Oyuntsetseg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Samecka-Cymerman and A. J. Kempers, “Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry,” Ecotoxicology and Environmental Safety, vol. 59, no. 1, pp. 64–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Boularbah, C. Schwartz, G. Bitton, and J. L. Morel, “Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils,” Chemosphere, vol. 63, no. 5, pp. 802–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. L. Liao, D. X. Liao, and Q. M. Li, “TEs contamination characteristics in soil of different mining activity zones,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 207–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. S. Lim, J. S. Lee, H. T. Chon, and M. Sager, “Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea,” Journal of Geochemical Exploration, vol. 96, no. 2-3, pp. 223–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. J. Alloway, “The origins of TEs in soils,” in TEs in Soils, B. J. Alloway, Ed., Blackie Academic & Professional, New York, NY, USA, 1995. View at Google Scholar
  6. M. C. Jung, “Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea,” Applied Geochemistry, vol. 16, no. 11-12, pp. 1369–1375, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Chatain, F. Sanchez, R. Bayard, P. Moszkowicz, and R. Gourdon, “Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil,” Journal of Hazardous Materials, vol. 122, no. 1-2, pp. 119–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Concas, C. Ardau, A. Cristini, P. Zuddas, and G. Cao, “Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site,” Chemosphere, vol. 63, no. 2, pp. 244–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Bolormaa, J. Baasansuren, K. Kawasaki, M. Watanabe, and T. Hattori, “PIXE analysis of heavy metals in water samples from a mining area in Mongolia,” Nuclear Instruments and Methods in Physics Research B, vol. 243, no. 1, pp. 161–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Bolormaa, M. Tsuji, K. Kawasaki, S. Narantsetseg, and T. Hattori, “PIXE analysis of trace elements in human hair of patients with liver disorders,” International Journal of PIXE, vol. 16, no. 1-2, pp. 29–38, 2006. View at Google Scholar
  11. O. Bolormaa, J. Baasansuren, K. Kawasaki, M. Watanabe, and T. Hattroi, “Total elemental composition analysis of soil samples using the PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 262, no. 2, pp. 385–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. International Organization for Standardization (ISO), “Determination of particle size distribution by gravitational liquid sedimentation methods—part 2: fixed pipette method,” ISO 13317-2, 2001. View at Google Scholar
  13. X. Li and I. Thornton, “Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities,” Applied Geochemistry, vol. 16, no. 15, pp. 1693–1706, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. M. Bowen, Environmental Chemistry of the Elements, Academic Press, New York, NY, USA, 1979.
  15. F. J. Zhao, S. P. McGrath, and G. Merrington, “Estimates of ambient background concentrations of trace metals in soils for risk assessment,” Environmental Pollution, vol. 148, no. 1, pp. 221–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Mucha, M. T. S. D. Vasconcelos, and A. A. Bordalo, “Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics,” Environmental Pollution, vol. 121, no. 2, pp. 169–180, 2003. View at Publisher · View at Google Scholar
  17. S. R. Oliva and A. J. F. Espinosa, “Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources,” Microchemical Journal, vol. 86, no. 1, pp. 131–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Guidelines for Drinking-Water Quality, vol. 1, WHO, Geneva, Switzerland, 2nd edition, 1993, http://www.Labo-eq.co.jp/.
  19. S. Murao, E. Daisa, K. Sera, V. B. Maglambayan, and S. Futatsugawa, “PIXE measurement of human hairs from a small-scale mining site of the Philippines,” Nuclear Instruments and Methods in Physics Research B, vol. 189, no. 1–4, pp. 168–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Murao, K. Sera, B. Tumenbayar, M. Tsuji, S. Futatsugawa, and T. Waza, “Finding high level arsenic for Mongolian villagers' hair through PIXE technique,” in Proceedings of the 16th International Conference 8 on Ion Beam Analysis, pp. 10–24, Albuquergue, NM, USA, June 2003.
  21. K. Sera, S. Futatsugawa, and S. Murao, “Quantitative analysis of untreated hair samples for monitoring human exposure to heavy metals Nucl. Inst. and Meth,” Physiological Research, vol. B189, no. 1-4, pp. 174–179, 2002. View at Google Scholar