Table of Contents
ISRN Thermodynamics
Volume 2012, Article ID 167281, 10 pages
Research Article

Thermodynamic Analysis of Evaporation of Levitated Binary and Ternary Liquid Fuel Droplets under Normal Gravity

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India

Received 31 March 2012; Accepted 18 May 2012

Academic Editors: H. Binder, S. Hashimoto, R. D. Simitev, and P. Trens

Copyright © 2012 S. Raghuram and Vasudevan Raghavan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The present study presents a thermodynamic model for predicting the vaporization characteristics of binary and ternary hydrocarbon fuel droplets under atmospheric pressure and normal gravity conditions. The model employs activity coefficients based on UNIFAC group contribution method and evaluates the vapor-liquid equilibrium of binary and ternary droplets. The gas-phase properties have been evaluated as a function of temperature and mixture molecular weight. The model has been validated against the experimental data available in literature. The validated model is used to predict the vaporization characteristics of binary and ternary fuel droplets at atmospheric pressure under normal gravity. Results show multiple slopes in the droplet surface regression indicating preferential vaporization of fuel components based on their boiling point and volatility. The average evaporation rate is dictated by the ambient temperature and also by composition of the mixture.