Table of Contents
ISRN Thermodynamics
Volume 2012, Article ID 167281, 10 pages
http://dx.doi.org/10.5402/2012/167281
Research Article

Thermodynamic Analysis of Evaporation of Levitated Binary and Ternary Liquid Fuel Droplets under Normal Gravity

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India

Received 31 March 2012; Accepted 18 May 2012

Academic Editors: H. Binder, S. Hashimoto, R. D. Simitev, and P. Trens

Copyright © 2012 S. Raghuram and Vasudevan Raghavan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Y. Tong and W. A. Sirignano, “Multicomponent droplet vaporization in a high temperature gas,” Combustion and Flame, vol. 66, no. 3, pp. 221–235, 1986. View at Google Scholar · View at Scopus
  2. J. Tamim and W. L. H. Hallett, “A continuous thermodynamics model for multicomponent droplet vaporization,” Chemical Engineering Science, vol. 50, no. 18, pp. 2933–2942, 1995. View at Google Scholar · View at Scopus
  3. S. Yang, Y. Ra, and R. D. Reitz, “A vaporization model for realistic multi-component fuels,” in Proceedings of the 22nd Annual Conference on Liquid Atomization and Spray Systems-USA, pp. 16–19, Cincinnati, Ohio, USA, May 2010.
  4. S. K. Aggarwal and H. C. Mongia, “Multicomponent and high-pressure effects on droplet vaporization,” Journal of Engineering for Gas Turbines and Power, vol. 124, no. 2, pp. 248–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Renksizbulut and M. Bussmann, “Multicomponent droplet evaporation at intermediate Reynolds numbers,” International Journal of Heat and Mass Transfer, vol. 36, no. 11, pp. 2827–2835, 1993. View at Google Scholar · View at Scopus
  6. Y. Ra and D. R. Reitz, “The application of a multicomponent droplet vaporization model to gasoline direct injection engines,” International Journal of Engine Research, vol. 4, no. 3, pp. 193–218, 2003. View at Publisher · View at Google Scholar
  7. K. Gartung, S. Arndt, and C. Seibel, “Vaporization of multicomponent fuel droplets numerical and experimental evaluation,” in Proceedings of the18th Annual Conference on Liquid Atomization and Spray Systems-Europe, pp. 9–11, Zaragoza, Spain, September 2002.
  8. G. Chen, S. K. Aggarwal, T. A. Jackson, and G. L. Switzer, “Experimental study of pure and multicomponent fuel droplet evaporation in a heated air flow,” Automization and Sprays, vol. 7, no. 3, pp. 317–337, 1997. View at Google Scholar · View at Scopus
  9. J. Wilms, Evaporation of multicomponent droplets [Ph.D. thesis], Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, 2005.
  10. S. R. Turns, An Introduction to Combustion, McGraw-Hill, New York, NY, USA, 2000.
  11. K. Annamalai and I. K. Puri, Combustion Science and Engineering, CRC Press, New York, NY, USA, 2007.
  12. R. C. Reid, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 2001.
  13. J. Gmehling, P. Rasmussen, and A. Fredenslund, “Vapor-liquid equilibria by UNIFAC group contribution. Revision and extension. 2,” Industrial and Engineering Chemistry Process Design and Development, vol. 21, no. 1, pp. 118–127, 1982. View at Google Scholar · View at Scopus