Table of Contents
ISRN Gastroenterology
Volume 2012, Article ID 176728, 7 pages
http://dx.doi.org/10.5402/2012/176728
Research Article

Lipid Droplet Binding of Hepatitis C Virus Core Protein Genotype 3

1Division of Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
2Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA

Received 15 March 2012; Accepted 27 May 2012

Academic Editors: A. Nakajima and W. Vogel

Copyright © 2012 Guan Qiang and Ravi Jhaveri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Alter, D. Kruszon-Moran, O. V. Nainan et al., “The prevalence of hepatitis C virus infection in the United States, 1988 through 1994,” The New England Journal of Medicine, vol. 341, no. 8, pp. 556–562, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Viral Hepatitis C Fact Sheet.
  3. J. B. Wong, G. M. McQuillan, J. G. McHutchison, and T. Poynard, “Estimating future hepatitis C morbidity, mortality, and costs in the United States,” American Journal of Public Health, vol. 90, no. 10, pp. 1562–1569, 2000. View at Google Scholar · View at Scopus
  4. C. Y. Dai, W. L. Chuang, C. K. Ho et al., “Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: a community-based study,” Journal of Hepatology, vol. 49, no. 1, pp. 9–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Siagris, M. Christofidou, G. J. Theocharis et al., “Serum lipid pattern in chronic hepatitis C: histological and virological correlations,” Journal of Viral Hepatitis, vol. 13, no. 1, pp. 56–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. J. S. Cross, A. Quaglia, S. Hughes, D. Joshi, and P. M. Harrison, “The impact of hepatic steatosis on the natural history of chronic hepatitis C infection,” Journal of Viral Hepatitis, vol. 16, no. 7, pp. 492–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gordon, C. A. McLean, J. S. Pedersen, M. J. Bailey, and S. K. Roberts, “Hepatic steatosis in chronic hepatitis B and C: predictors, distribution and effect on fibrosis,” Journal of Hepatology, vol. 43, no. 1, pp. 38–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Hézode, F. Roudot-Thoraval, E. S. Zafrani, D. Dhumeaux, and J. M. Pawlotsky, “Different mechanisms of steatosis in hepatitis C virus genotypes 1 and 3 infections,” Journal of Viral Hepatitis, vol. 11, no. 5, pp. 455–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Moriya, H. Yotsuyanagi, Y. Shintani et al., “Hepatitis C virus core protein induces hepatic steatosis in transgenic mice,” Journal of General Virology, vol. 78, no. 7, pp. 1527–1531, 1997. View at Google Scholar · View at Scopus
  10. H. M. Patton, K. Patel, C. Behling et al., “The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients,” Journal of Hepatology, vol. 40, no. 3, pp. 484–490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Perumalswami, D. E. Kleiner, G. Lutchman et al., “Steatosis and progression of fibrosis in untreated patients with chronic hepatitis C infection,” Hepatology, vol. 43, no. 4, pp. 780–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Boulant, M. W. Douglas, L. Moody, A. Budkowska, P. Targett-Adams, and J. McLauchlan, “Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner,” Traffic, vol. 9, no. 8, pp. 1268–1282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Boulant, P. Targett-Adams, and J. McLauchlan, “Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus,” Journal of General Virology, vol. 88, no. 8, pp. 2204–2213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Miyanari, K. Atsuzawa, N. Usuda et al., “The lipid droplet is an important organelle for hepatitis C virus production,” Nature Cell Biology, vol. 9, no. 9, pp. 1089–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Shavinskaya, S. Boulant, F. Penin, J. McLauchlan, and R. Bartenschlager, “The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly,” Journal of Biological Chemistry, vol. 282, no. 51, pp. 37158–37169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Gastaminza, G. Cheng, S. Wieland, J. Zhong, W. Liao, and F. V. Chisari, “Cellular determinants of hepatitis c virus assembly, maturation, degradation, and secretion,” Journal of Virology, vol. 82, no. 5, pp. 2120–2129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Abid, V. Pazienza, A. de Gottardi et al., “An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation,” Journal of Hepatology, vol. 42, no. 5, pp. 744–751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Jhaveri, J. McHutchison, K. Patel, G. Qiang, and A. M. Diehl, “Specific polymorphisms in hepatitis C virus genotype 3 core protein associated with intracellular lipid accumulation,” Journal of Infectious Diseases, vol. 197, no. 2, pp. 283–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Rubbia-Brandt, R. Quadri, K. Abid et al., “Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3,” Journal of Hepatology, vol. 33, no. 1, pp. 106–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Hüssy, H. Langen, J. Mous, and H. Jacobsen, “Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase,” Virology, vol. 224, no. 1, pp. 93–104, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Jhaveri, P. Kundu, A. M. Shapiro, A. Venkatesan, and A. Dasgupta, “Effect of heptitis C virus core protein on cellular gene expression: specific inhibition of cyclooxygenase 2,” Journal of Infectious Diseases, vol. 191, no. 9, pp. 1498–1506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Moriya, H. Fujie, Y. Shintani et al., “The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice,” Nature Medicine, vol. 4, no. 9, pp. 1065–1067, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sabile, G. Perlemuter, F. Bono et al., “Hepatitis C virus core protein binds to apolipoprotein AII and its secretion is modulated by fibrates,” Hepatology, vol. 30, no. 4, pp. 1064–1076, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Okamoto, Y. Mori, Y. Komoda et al., “Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation,” Journal of Virology, vol. 82, no. 17, pp. 8349–8361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Okamoto, K. Moriishi, T. Miyamura, and Y. Matsuura, “Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein,” Journal of Virology, vol. 78, no. 12, pp. 6370–6380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. McLauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, “Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets,” EMBO Journal, vol. 21, no. 15, pp. 3980–3988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Vauloup-Fellous, V. Pène, J. Garaud-Aunis et al., “Signal peptide peptidase-catalyzed cleavage of hepatitis C virus core protein is dispensable for virus budding but destabilizes the viral capsid,” Journal of Biological Chemistry, vol. 281, no. 38, pp. 27679–27692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Pène, C. Hernandez, C. Vauloup-Fellous, J. Garaud-Aunis, and A. R. Rosenberg, “Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment,” Journal of Viral Hepatitis, vol. 16, no. 10, pp. 705–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Targett-Adams, G. Hope, S. Boulant, and J. McLauchlan, “Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production,” Journal of Biological Chemistry, vol. 283, no. 24, pp. 16850–16859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. G. Hope and J. McLauchlan, “Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein,” Journal of General Virology, vol. 81, no. 8, pp. 1913–1925, 2000. View at Google Scholar · View at Scopus
  31. S. Boulant, R. Montserret, R. G. Hope et al., “Structural determinants that target the hepatitis C virus core protein to lipid droplets,” Journal of Biological Chemistry, vol. 281, no. 31, pp. 22236–22247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Hourioux, R. Patient, A. Morin et al., “The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model,” Gut, vol. 56, no. 9, pp. 1302–1308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Jackel-Cram, L. A. Babiuk, and Q. Liu, “Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core,” Journal of Hepatology, vol. 46, no. 6, pp. 999–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Jhaveri, G. Qiang, and A. M. Diehl, “Domain 3 of hepatitis C virus core protein is sufficient for intracellular lipid accumulation,” Journal of Infectious Diseases, vol. 200, no. 11, pp. 1781–1788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. S. Ai, Y. W. Lee, and S. S. L. Chen, “Characterization of hepatitis C virus core protein multimerization and membrane envelopment: revelation of a cascade of core-membrane interactions,” Journal of Virology, vol. 83, no. 19, pp. 9923–9939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Suzuki, K. Tamura, J. Li et al., “Ubiquitin-mediated degradation of hepatitis C virus core protein is regulated by processing at its carboxyl terminus,” Virology, vol. 280, no. 2, pp. 301–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Fukumoto and T. Fujimoto, “Deformation of lipid droplets in fixed samples,” Histochemistry and Cell Biology, vol. 118, no. 5, pp. 423–428, 2002. View at Publisher · View at Google Scholar · View at Scopus