Table of Contents
ISRN Astronomy and Astrophysics
VolumeΒ 2012, Article IDΒ 178561, 6 pages
Research Article

A Nonaxisymmetric Solution of Einstein’s Equations Featuring Pure Radiation from a Rotating Source

1Mathematics and Statistics Department, University of Otago, Dunedin, New Zealand
221 Rowbank Way, Loughborough, Leicestershire LE11 4AJ, UK

Received 7 January 2012; Accepted 8 February 2012

Academic Editors: H.Β Dehnen and N.Β Fornengo

Copyright Β© 2012 William Davidson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A special nonaxisymmetric solution of Einstein’s equations is derived, representing pure radiation from a rotating isolated source. The spacetime is assumed to be algebraically special having a multiple null eigenvector of the Weyl tensor forming a geodesic, shear-free, diverging, and twisting congruence 𝐀. Employing a complex null tetrad involving the vector 𝐀, the Ricci tensor, density of the radiation, divergence, and twist are calculated for the derived metric. A particular (nonaxisymmetric) subcase is shown to be flat at infinity and to contain the axisymmetric radiating Kerr metric, derived by Kramer and separately by Vaidya and Patel, as a special case. The spacetime is of Petrov type II and without Killing vectors.

1. Introduction

In this paper, we present a special solution to Einstein’s equations involving pure radiation. Pure radiation is characterised by an energy-momentum tensor of the formπ‘‡π‘Žπ‘=πœ™2π‘˜π‘Žπ‘˜π‘,(1) where 𝐀 is a null vector. The incoherent radiation is propagated along the 𝐀 lines and πœ™2is its energy density, which must, therefore, be positive. For our purpose, it will be assumed that the 𝐀 vector field forms a geodesic, shear-free congruence, that 𝐀 is a multiple eigenvector of the Weyl tensor, and that the metric is algebraically special. In addition, the congruence will be taken to be diverging and twisting. The consequences of these assumptions will be detailed in Section 2. In particular, they lead to a form of the metric originally derived by I. Robinson and J. R. Robinson [1] and Robinson et al. [2].

To obtain solutions of Einstein’s equations representing pure radiation, authors have in the main assumed some form of symmetry. An early one of spherical symmetry by Vaidya [3] featured pure radiation from a central Schwarzschild body, with the mass being consequently a function π‘š(𝑒)of the time coordinate 𝑒. This was followed by the axisymmetric radiating Kerr metric by Kramer [4], and also a different version of this by Vaidya and Patel [5], where in the latter setting a certain parameter to zero regained the Kerr metric in its original form [6]. These two versions represent pure radiation from a rotating central source. Herlt [7] found the complete solution for pure radiation in axisymmetric Kerr-Schild metrics (cf. Debney et al. [8]).

More recently, pure radiation solutions have been derived by exploiting possible symmetry groups in the hyperspace π‘Ÿ=const (see (8)). These authors [9–12] employed the theory of Cauchy-Riemann structures (see, e.g., Robinson and Trautman [13]). An axisymmetric solution of some generality, involving pure radiation from a rotating source, has been derived up to a linear second-order ordinary differential equation by Kramer and HΓ€hner [14].

A valuable method of generating algebraically special pure radiation fields from vacuum cases was devised by Stephani, thereby obtaining some explicit axisymmetric solutions [15]. In this paper, we shall employ Stephani’s device but will generate a nonaxisymmetric solution, which has the radiating Kerr metric as a special case. If a star can catastrophically collapse through its event horizon and if its ultimate state is a rotating axisymmetric Kerr black hole, then the time-dependent solution given here may be interpreted as a theoretical example of a nonaxisymmetric stage in that process.

2. The Basic Framework

Because of our assumptions in Section 1, we can write the following as properties of the 𝐀 congruence:(i)since 𝐀 is geodesic, πœ…=0β‡’π‘˜[π‘Žπ‘˜π‘];π‘π‘˜π‘=0, or via an affine parameter π‘˜π‘Ž;π‘π‘˜π‘=0;(ii)𝐀 is shear-free: 𝜎=0βŸΉπ‘˜(π‘Ž;𝑏)π‘˜π‘Ž;π‘βˆ’12ξ€·π‘˜π‘Ž;π‘Žξ€Έ2=0;(2)(iii)𝐀 is diverging and twisting: Θ=(1/2)π‘˜π‘Ž;π‘Ž>0,πœ”2=(1/2)π‘˜[π‘Ž;𝑏]π‘˜π‘Ž;𝑏>0;(iv)𝐀 is a multiple Weyl eigenvector: πœ“0=πœ“1=0.

We shall refer the spacetime to a complex null tetrad 𝐦,π¦π›πšπ«,𝐧, and 𝐀 with labels 1, 2, 3, and 4, respectively, with the fourth member being the 𝐀 of the above context. In relation to this tetrad, in order to display the form of the metric we adopt coordinates π‘₯𝑖=π‘₯,𝑦,π‘Ÿ, and 𝑒 for 𝑖=1,2,3, and 4, respectively. The spacelike coordinate π‘₯ is complex, 𝑦 its conjugate, π‘Ÿ an affine parameter along the 𝐀 lines, and 𝑒 a retarded time. The Newman-Penrose spin coefficients πœ…,𝜎 and 𝜌=βˆ’(Θ+π‘–πœ”) are expressible in terms of the tetrad by the relations:πœ…=βˆ’π‘˜π‘Ž;π‘π‘šπ‘Žπ‘˜π‘=0,𝜎=βˆ’π‘˜π‘Ž;π‘π‘šπ‘Žπ‘šπ‘=0,𝜌=βˆ’(Θ+π‘–πœ”)=βˆ’π‘˜π‘Ž;π‘π‘šπ‘Žπ‘šπ‘β‰ 0.(3)

It now becomes possible to write the metric in the following form [1, 2] (we use mainly the notation of [16]):d𝑠2=2πœ”1πœ”2βˆ’2πœ”3πœ”4,(4) whereπœ”1=βˆ’dπ‘₯π‘ƒπœŒ,πœ”2=βˆ’d𝑦,πœ”π‘ƒπœŒ3=d𝑒+𝐿dπ‘₯+πœ”πΏd𝑦,4=dπ‘Ÿ+π‘Šdπ‘₯+π‘Šd𝑦+π»πœ”3.(5) The dual frame is then, relative to the π‘₯𝑖 system,π‘šπ‘–=ξ€·βˆ’π‘ƒπœŒ,0,π‘ƒπ‘ŠπœŒ,π‘ƒπΏπœŒξ€Έ,π‘šπ‘–=ξ‚€0,βˆ’π‘ƒπœŒ,π‘ƒπ‘ŠπœŒ,𝑃,π‘›πΏπœŒπ‘–π‘˜=(0,0,βˆ’π»,1),𝑖=(0,0,1,0).(6) Here1𝜌=βˆ’,(π‘Ÿ+𝑖Σ)Ξ£=βˆ’π‘–π‘ƒ2ξ‚€πœ•πΏβˆ’πœ•πΏξ‚2,πΏπ‘Š=,π‘’πœŒ+π‘–πœ•Ξ£,πœ•β‰‘πœ•π‘₯βˆ’πΏπœ•π‘’,(7) and the metric will take the following form:d𝑠2ξƒ―=βˆ’2𝐻d𝑒2ξ‚€+(π‘Š+2𝐻𝐿)d𝑒dπ‘₯+π‘Š+2𝐻𝐿d𝑒d𝑦+d𝑒dπ‘Ÿ+𝐿dπ‘₯dπ‘Ÿ++𝐿d𝑦dπ‘ŸπΏπ‘Š+𝐻𝐿2ξ€Έdπ‘₯2+ξ‚€πΏπ‘Š+𝐻𝐿2d𝑦2βˆ’ξƒ©1𝑃2πœŒπœŒξ€Έβˆ’πΏπ‘Šβˆ’πΏπ‘Šβˆ’2𝐻𝐿𝐿ξƒͺξƒ°.dπ‘₯d𝑦(8) In particular, the coefficient of d𝑒2 is βˆ’2𝐻where𝐾𝐻=2βˆ’π‘Ÿπ‘ƒβˆ’1𝑃,π‘’βˆ’(π‘šπ‘Ÿ+𝑀Σ)ξ€·π‘Ÿ2+Ξ£2ξ€Έ,𝐾=2𝑃2ξ‚€πœ•ξ‚€π‘ƒReβˆ’1πœ•π‘ƒβˆ’πΏ,𝑒,(9) and 𝑀 will be defined by (11).

In these relations 𝑃, 𝐾, π‘š, and 𝑀 are real functions, and 𝐿 is a complex function, of π‘₯, 𝑦, and 𝑒. 𝐻 is a real function and π‘Š a complex function of π‘₯, 𝑦, π‘Ÿ, and 𝑒. A subscript indicates partial differentiation.

For pure radiation, the two equations to be satisfied are (cf. [16])ξ€·3𝐿,π‘’ξ€Έβˆ’πœ•(π‘š+𝑖𝑀)=0,(10)𝑀=Σ𝐾+𝑃2ξ‚€πœ•Reπœ•Ξ£βˆ’2𝐿,π‘’πœ•Ξ£βˆ’Ξ£πœ•π‘’πœ•πΏξ‚.(11) Then πœ™2is given by the equation𝑃4ξ€·πœ•βˆ’2𝐿,𝑒+2π‘ƒβˆ’1ξ€Έπœ•π‘ƒπœ•πΆβˆ’π‘ƒ3ξ€·π‘ƒβˆ’3ξ€Έ(π‘š+𝑖𝑀),𝑒=πœ™2ξ€·2πœŒπœŒξ€Έ,(12) where𝐢=πœ•ξ‚€π‘ƒβˆ’1πœ•π‘ƒβˆ’πΏ,𝑒+ξ‚€π‘ƒβˆ’1πœ•π‘ƒβˆ’πΏ,𝑒2.(13)

3. A Nonaxisymmetric Pure Radiation Rotation Field

Referring to (1), we have from the energy equation π‘‡π‘Žπ‘;𝑏=0, using the properties listed in (2), namely, π‘˜π‘Ž;π‘π‘˜π‘=0, Θ=(1/2)π‘˜π‘Ž;π‘Ž=βˆ’(1/2)(𝜌+𝜌), and noting from (6) that 𝐀=πœ•π‘Ÿ,that πœ™2 has the formπœ™2=πœ“(π‘₯,𝑦,𝑒)𝜌𝜌.(14) For the functions 𝐿 and 𝑃, we initially choose𝑃=𝑃0=π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐,𝐿=𝐿0𝑖𝑛=βˆ’0+𝑛1𝑦+𝑛2𝑦2ξ€Έ(π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐)2,π‘š=π‘š0,(15) whereπ‘Ž, 𝑏, 𝑐, 𝑛0, 𝑛1, 𝑛2, and π‘š0(>0) are real constants.

We now derive from the definitions in Section 2 that𝑀=𝑀0=0.(16) Henceforth, we shall calculate tensor components relative to the complex null tetrad. In that frame, the metric coefficients areπ‘”π‘Žπ‘=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ 01001000000βˆ’100βˆ’10.(17) In particular, we find for the Ricci tensorπ‘…π‘Žπ‘=0.(18) We, therefore, have a vacuum spacetime. Accordingly, we shall now adopt the method of Stephani [15] to generate a pure radiation field.

Stephani’s result can be stated: given π‘š=π‘š0(=const),𝑀0(=0),𝐿0,𝑃0specifying an algebraically special vacuum solution to Einstein’s equations, then if we change (only) 𝑃 from 𝑃0 to 𝑃0𝐴(π‘₯,𝑦,𝑒)and if (10) and (11) remain valid (with 𝑀=𝑀0=0), then the resultant spacetime represents a field of pure radiation.

For our case, starting with (15) except for the modification of 𝑃, we find that Stephani’s conditions are satisfied if we adopt for 𝐴(π‘₯,𝑦,𝑒)the value𝐴(π‘₯,𝑦,𝑒)=𝑒,(19) provided we set𝑛2=𝑏𝑛1βˆ’π‘Žπ‘›0𝑐.(20)

Σ and 𝐾 will be altered accordingly in (7) and (9), with 𝐿=𝐿0 remaining unchanged.

We may verify that with the revised value of 𝑃 that 𝑀=𝑀0=0,and that the equations for pure radiation, (10) and (11), are then satisfied.

Calculation of the Ricci tensor in the null tetrad yields the result:π‘…π‘Žπ‘=6π‘š0π‘’πœŒπœŒπ›Ώ3π‘Žπ›Ώ3𝑏.(21) It, therefore, follows from (1) and (21), or from (12), that πœ™2=(6π‘š0/𝑒)𝜌𝜌. From the definition of 𝜌in (7), and also as βˆ’(Θ+π‘–πœ”), we obtain for the expansion and twist of the 𝐀 congruence:π‘Ξ˜=2π‘Ÿ[]π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐2𝐷,πœ”=βˆ’π‘’2𝑐[]Γ—ξ€½π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐2𝑛0[]π‘Žπ‘π‘₯𝑦+π‘Žπ‘(π‘₯+𝑦)+π‘π‘βˆ’π‘›1ξ€Ίξ€·2𝑏2ξ€Έβˆ’π‘Žπ‘π‘₯𝑦+𝑏𝑐(π‘₯+𝑦)+𝑐2ξ€»ξ€Ύ/𝐷,𝐷=𝑐2π‘Ÿ2[]π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐2+𝑒4ξ€½2𝑛0[]π‘Žπ‘π‘₯𝑦+π‘Žπ‘(π‘₯+𝑦)+π‘π‘βˆ’π‘›1ξ€Ίξ€·2𝑏2ξ€Έβˆ’π‘Žπ‘π‘₯𝑦+𝑏𝑐(π‘₯+𝑦)+𝑐2ξ€»ξ€Ύ2.(22) For the energy density of the pure radiation, we can now writeπœ™2=6π‘š0𝑐2[]π‘Žπ‘₯𝑦+𝑏(π‘₯+𝑦)+𝑐2𝑒𝐷,(23) which is >0, as required, andβ†’0as either π‘Ÿ or π‘’β†’βˆž. Because of the radiation emission, the central isolated mass will steadily decrease.

The Ricci tensor being given by (21), we have the invariants:𝑅=0,π‘…π‘Žπ‘π‘…π‘Žπ‘=0.(24)

4. Behaviour at Infinity

Our spacetime becomes axisymmetric if we set 𝑏=0. But if we go further and adopt a subset of our previous assignments:1𝑏=0,π‘Ž=2ξ‚€,𝑐=1,𝑃(π‘₯,𝑦,𝑒)=1+π‘₯𝑦2,𝐿(π‘₯,𝑦)=βˆ’π‘–π‘›π‘¦(1+π‘₯𝑦/2)2,(25) and then make the transformation√π‘₯=ξ‚€πœƒ2tan2ξ‚π‘’π‘–πœ‰βˆš,𝑦=ξ‚€πœƒ2tan2ξ‚π‘’βˆ’π‘–πœ‰,π‘Ÿ=π‘Ÿ,𝑒=𝑑(26) we obtain a form of the Kerr metric:d𝑠2=ξ€·π‘Ÿ2+𝑛2cos(πœƒ)2ξ€Έdπœƒ2+sin(πœƒ)2ξƒ©π‘Ÿ2+𝑛2+2𝑛2π‘š0π‘Ÿsin(πœƒ)2π‘Ÿ2+𝑛2cos(πœƒ)2ξƒͺdπœ‰2βˆ’2𝑛sin(πœƒ)2dπœ‰dπ‘Ÿβˆ’2dπ‘Ÿd𝑑+4π‘›π‘š0π‘Ÿsin(πœƒ)2π‘Ÿ2+𝑛2cos(πœƒ)2βˆ’ξ‚΅dπœ‰d𝑑1βˆ’2π‘š0π‘Ÿπ‘Ÿ2+𝑛2cos(πœƒ)2ξ‚Άd𝑑2.(27) As is well known, the Kerr metric is flat at infinity. For any stationary metric associated with an isolated mass and which is flat at infinity, expansion in powers of 1/π‘Ÿ has the following form [17, page 452]:d𝑠2ξ‚΅2=βˆ’1βˆ’π‘€π‘Ÿξ‚€1+π‘‚π‘Ÿ2d𝑑2βˆ’ξ‚΅4πœ€π‘—π‘˜π‘šπ‘†π‘˜π‘‹π‘šπ‘Ÿ3ξ‚€1+π‘‚π‘Ÿ3d𝑋𝑗+2d𝑑1+π‘€π‘Ÿξ‚€1+π‘‚π‘Ÿ2ξ‚ξ‚Άπ›Ώπ‘—π‘˜+(vanishingterms)π›Ώπ‘—π‘˜ξ‚Όd𝑋𝑗dπ‘‹π‘˜.(28) In (28), the 𝑋𝑗are the coordinates of the ultimately flat spacetime,𝑋=π‘Ÿsinπœƒcosπœ‰,π‘Œ=π‘Ÿsinπœƒsinπœ‰,𝑍=π‘Ÿcosπœƒ,(29) and π‘†π‘˜is the angular momentum vector of the source.

Comparing (28) with (27) (expanded in powers of 1/π‘Ÿ), we can confirm that the Kerr central mass is 𝑀=π‘š0. Moreover, as was proved by Cohen [18], the angular momentum of the Kerr mass is π‘›π‘š0, so that the parameter 𝑛 in (25) is the angular momentum per unit mass.

If we now retain (25) except that we change 𝑃 to𝑃(π‘₯,𝑦,𝑒)=1+π‘₯𝑦2𝑒(30) and follow through (26), then we have a form of the radiating Kerr metric (cf. [4, 5]), namely,d𝑠2=π‘Ÿ2+𝑛2𝑑4cos(πœƒ)2𝑑2dπœƒ2βˆ’4𝑛3𝑑sin(πœƒ)3cos(πœƒ)dπœƒdπœ‰+sin(πœƒ)2𝑛2𝑑2+𝑛4sin(πœƒ)4+π‘Ÿ2𝑑2𝑛+22π‘Ÿsin(πœƒ)𝑑2𝑛+22π‘š0π‘Ÿsin(πœƒ)2π‘Ÿ2+𝑛2𝑑4cos(πœƒ)2ξƒ­dπœ‰2βˆ’2𝑛sin(πœƒ)2dπœ‰dπ‘Ÿβˆ’4𝑛2𝑑sin(πœƒ)cos(πœƒ)dπœƒd𝑑+2sin(πœƒ)2×𝑛3sin(πœƒ)2+2π‘›π‘Ÿπ‘‘+2π‘›π‘š0π‘Ÿπ‘Ÿ2+𝑛2𝑑4cos(πœƒ)2ξ‚Ήβˆ’ξ‚Έπ‘‘dπœ‰dπ‘‘βˆ’2dπ‘Ÿd𝑑2βˆ’π‘›2sin(πœƒ)2π‘Ÿβˆ’2π‘‘π‘šβˆ’20π‘Ÿπ‘Ÿ2+𝑛2𝑑4cos(πœƒ)2ξ‚Ήd𝑑2.(31) It may be shown for this metric that the central mass (of parameter π‘š0) has at epoch 𝑒 the value π‘š0/𝑒3(see [14]), confirming its steady loss to radiation.

In the light of the foregoing, we see that our present solution is a nonaxisymmetric spacetime with a radiating rotating source. It has of course extra complication mathematically. But if we retain the expressions (26) for π‘₯ and 𝑦, then we find that the components of the Riemann tensor for our nonaxisymmetric case β†’0as either π‘Ÿ or π‘’β†’βˆž. In particular, if we adopt the following values:1π‘Ž=2,𝑐=1,𝑛1=𝑛,𝑛0𝑛=2𝑏𝑛2ξ€Έ=0,(32) and the assignment (26), then the components of the Riemann tensor β†’0as π‘Ÿβ†’βˆžat rates varying from π‘Ÿβˆ’2 to π‘Ÿβˆ’4and as π‘‘β†’βˆžat rates between π‘‘βˆ’4 and π‘‘βˆ’8.Hence the associated metric is flat at infinity. We give its metric coefficients in the Appendix. There we see that if we set 𝑏=0 in this nonaxisymmetric pure radiation solution, then we obtain the axisymmetric radiating Kerr metric given at (31).

Our general metric, specified by (19) and (20), is of Petrov Type II and without Killing vectors.

5. Conclusion

A solution of Einstein’s equations has been obtained, which features pure radiation from an isolated rotating source in a nonaxisymmetric environment. It contains the axisymmetric radiating Kerr metric as a special case.

An interesting aspect of the solution, therefore, is that its lack of symmetry suggests a possible theoretical model for the time-dependent configuration of the catastrophic collapse of a rotating star, during the approach to its final state of axial symmetry.


Here we give the metric coefficients for the (nonaxisymmetric) subcase:1π‘Ž=2,𝑐=1,𝑛1=𝑛,𝑛0𝑛=2𝑏𝑛2ξ€Έ,=0(A.1) having made the transformation√π‘₯=ξ‚€πœƒ2tan2ξ‚π‘’π‘–πœ‰βˆš,𝑦=ξ‚€πœƒ2tan2ξ‚π‘’βˆ’π‘–πœ‰,π‘”π‘Ÿ=π‘Ÿ,𝑒=𝑑,πœƒπœƒ=512𝑏2𝑛2sin2πœ‰π΄4(1+cosπœƒ)2ξ‚Έ2ξ€·1βˆ’2𝑏2𝑑2βˆ’ξ‚΅πΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2+βˆšξ‚Άξ‚Ή10242𝑏𝑛3𝐡𝑑sinπœ‰π΄5(1+cosπœƒ)2ξ‚ƒξ‚€πœƒtan2+βˆšξ‚„+ξ€·π‘Ÿ2𝑏cosπœ‰162𝐴2+𝑛2𝐡2𝑑4𝐴4𝑑2(1+cosπœƒ)2,π‘”πœƒπœ‰βˆš=βˆ’1282𝑏𝑛2tan(πœƒ/2)sinπœ‰π΄4ξ‚ƒξ‚€πœƒ(1+cosπœƒ)tan2+βˆšξ‚„Γ—ξ‚Έ2𝑏cosπœ‰πΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2ξ‚Ή+√512ξ€·2𝑏1βˆ’2𝑏2𝑛2𝑑2tan(πœƒ/2)sinπœ‰π΄4Γ—ξ‚ƒξ‚€πœƒ(1+cosπœƒ)tan2+βˆšξ‚„+2𝑏cosπœ‰512𝑛3𝐡𝑑tan(πœƒ/2)𝐴5×(1+cosπœƒ)2𝑏2ξ€·2cos2ξ€Έβˆšπœ‰βˆ’1+2ξ‚€πœƒ2𝑏tan2cosπœ‰+tan2ξ‚€πœƒ2,π‘”ξ‚ξ‚„πœ‰πœ‰=βˆ’256𝑛2tan2(πœƒ/2)𝐴4ξ‚ƒξ‚€πœƒtan2+βˆšξ‚„2𝑏cosπœ‰2Γ—ξ‚ΈπΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2ξ‚Ή+ξ€·5121βˆ’2𝑏2𝑛2𝑑2tan2(πœƒ/2)𝐴4ξ‚ƒξ‚€πœƒtan2+βˆšξ‚„2𝑏cosπœ‰2βˆ’βˆš10242𝑏𝑛3𝐡𝑑tan2(πœƒ/2)sinπœ‰π΄5ξ‚ƒξ‚€πœƒtan2+βˆšξ‚„+2𝑏cosπœ‰16tan2(πœƒ/2)𝐴4𝑑2ξ€Ίπ‘Ÿ2𝐴2+𝑛2𝑑4𝐡2ξ€»,π‘”πœƒπ‘‘=√162𝑏𝑛sinπœ‰π΄2ξ‚Έξ€·(1+cosπœƒ)1βˆ’2𝑏2𝑑2βˆ’ξ‚΅πΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2+ξ‚Άξ‚Ή32𝑛2𝐡𝑑𝐴3ξ‚ƒξ‚€πœƒ(1+cosπœƒ)tan2+βˆšξ‚„,𝑔2𝑏cosπœ‰πœ‰π‘‘=ξ‚€βˆš16𝑛tan(πœƒ/2)tan(πœƒ/2)+2𝑏cosπœ‰π΄2Γ—ξ‚Έξ€·1βˆ’2𝑏2𝑑2βˆ’ξ‚΅πΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2βˆ’βˆšξ‚Άξ‚Ή322𝑏𝑛2𝐡𝑑𝐴3ξ‚€πœƒtan2𝑔sinπœ‰,πœƒπ‘Ÿβˆš=βˆ’162𝑏𝑛sinπœ‰π΄2,𝑔(1+cosπœƒ)πœ‰π‘Ÿ=βˆ’16𝑛tan(πœƒ/2)𝐴2ξ‚€ξ‚€πœƒtan2+βˆšξ‚,𝑔2𝑏cosπœ‰π‘‘π‘Ÿπ‘”=βˆ’1,𝑑𝑑=βˆ’πΎβˆ’2π‘Ÿπ‘‘βˆ’2π‘š0π‘Ÿπ‘Ÿ2+Ξ£2ξ‚Ά,𝐾=𝑛2(1+cosπœƒ)1βˆ’2𝑏2ξ€Έβˆšcosπœƒβˆ’22𝑏sinπœƒcosπœ‰βˆ’2𝑏2ξ‚„βˆ’1√1+22𝑏sinπœƒcosπœ‰+2𝑏2sin2πœƒcos2πœ‰+ξ€·1βˆ’2𝑏2𝑑2,4𝐴=ξ‚ƒβˆš1+cosπœƒ1+ξ‚„,42𝑏sinπœƒcosπœ‰π΅=1+cosπœƒ2𝑏2(√1+cosπœƒ)+ξ‚„,2𝑏sinπœƒcosπœ‰βˆ’cosπœƒΞ£=𝐡𝑛𝑑2𝐴.(A.2) Setting 𝑏=0 in the above nonaxisymmetric coefficients gives the axisymmetric radiating Kerr metric of (31).


  1. I. Robinson and J. R. Robinson, β€œVacuum metrics without symmetry,” International Journal of Theoretical Physics, vol. 2, pp. 231–242, 1969. View at Publisher Β· View at Google Scholar
  2. I. Robinson, A. Schild, and H. Strauss, β€œA generalized Reissner-NordstrΓΆm solution,” International Journal of Theoretical Physics, vol. 2, no. 3, pp. 243–245, 1969. View at Publisher Β· View at Google Scholar Β· View at Scopus
  3. P. C. Vaidya, β€œThe external field of a radiating star in general relativity,” Current Science, vol. 12, no. 6, p. 183, 1943. View at Google Scholar
  4. D. Kramer, β€œGravitational field of a rotating radiating source,” in Proceedings of the Tezisy 3rd Soviet gravitation conference, p. 321, Yerevan, USSR, 1972.
  5. P. C. Vaidya and L. K. Patel, β€œRadiating Kerr metric,” Physical Review D, vol. 7, no. 12, pp. 3590–3593, 1973. View at Publisher Β· View at Google Scholar Β· View at Scopus
  6. R. P. Kerr, β€œGravitational field of a spinning mass as an example of algebraically special metrics,” Physical Review Letters, vol. 11, no. 5, pp. 237–238, 1963. View at Publisher Β· View at Google Scholar
  7. E. Herlt, β€œKerr-Schild-Vaidya fields with axial symmetry,” General Relativity and Gravitation, vol. 12, no. 1, pp. 1–7, 1980. View at Publisher Β· View at Google Scholar Β· View at Scopus
  8. G. C. Debney, R. P. Kerr, and A. Schild, β€œSolutions of the Einstein and Einstein-Maxwell equations,” Journal of Mathematical Physics, vol. 10, no. 10, pp. 1842–1854, 1969. View at Google Scholar Β· View at Scopus
  9. J. Lewandowski and P. Nurowski, β€œAlgebraically special twisting gravitational fields and CR structures,” Classical and Quantum Gravity, vol. 7, no. 3, Article ID 007, pp. 309–328, 1990. View at Publisher Β· View at Google Scholar Β· View at Scopus
  10. J. Tafel, P. Nurowski, and J. Lewandowski, β€œPure radiation field solutions of the Einstein equations,” Classical and Quantum Gravity, vol. 8, pp. L83–L88, 1991. View at Google Scholar
  11. J. Lewandowski, P. Nurowski, and J. Tafel, β€œAlgebraically special solutions of the Einstein equations with pure radiation fields,” Classical and Quantum Gravity, vol. 8, no. 3, article no. 009, pp. 493–501, 1991. View at Publisher Β· View at Google Scholar Β· View at Scopus
  12. A. M. Grundland and J. Tafel, β€œGroup invariant solutions to the Einstein equations with pure radiation fields,” Classical and Quantum Gravity, vol. 10, no. 11, article no. 016, pp. 2337–2345, 1993. View at Publisher Β· View at Google Scholar Β· View at Scopus
  13. I. Robinson and A. Trautman, β€œSome spherical gravitational waves in general relativity,” Proceedings of the Royal Society A, vol. 265, pp. 463–473, 1962. View at Publisher Β· View at Google Scholar
  14. D. Kramer and U. HΓ€hner, β€œA rotating pure radiation field,” Classical and Quantum Gravity, vol. 12, no. 9, article no. 015, pp. 2287–2296, 1995. View at Publisher Β· View at Google Scholar Β· View at Scopus
  15. H. Stephani, β€œA method to generate algebraically special pure radiation field solutions from the vacuum,” Journal of Physics A, vol. 12, no. 7, article no. 021, pp. 1045–1049, 1979. View at Publisher Β· View at Google Scholar Β· View at Scopus
  16. H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambridge University Press, Cambridge, UK, 2003.
  17. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Franscisco, Calif, USA, 1973.
  18. J. M. Cohen, β€œAngular momentum and the Kerr metric,” Journal of Mathematical Physics, vol. 9, pp. 905–906, 1968. View at Publisher Β· View at Google Scholar