Table of Contents
ISRN Materials Science
Volume 2012 (2012), Article ID 193541, 6 pages
http://dx.doi.org/10.5402/2012/193541
Research Article

Biobased Materials Production from Biodiesel Residuals of Rapeseed

1Department of Agrosystems, Swedish University of Agricultural Sciences, P.O. Box 104, 230 53 Alnarp, Sweden
2Fibre and Polymer Technology, Royal Institute of Technology, 100 44 Stockholm, Sweden
3Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 230 53 Alnarp, Sweden
4Innventia, P.O. Box 5604, 11486 Stockholm, Sweden

Received 1 February 2012; Accepted 24 February 2012

Academic Editors: X. Colom and H. S. Ku

Copyright © 2012 E. Johansson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A full biouse of crops for multiple end-uses would contribute to a more economically attractive and thereby more sustainable use of the crop. The purpose of this paper was to evaluate options to develop materials from residuals of rapeseed, originating from the biodiesel (RME) production. Compression molding of rapeseed flour and rapeseed cake residuals was evaluated together with additions of different amount of plasticizer (glycerol), as well as use of various pressing temperatures and times. The results were promising and led to a compact and hard, although somewhat brittle material. The potential to produce materials from the rapeseed residuals from RME production is thus high. Glycerol content was the most important factor increasing tensile strength in the material followed by pressing time. No clear protein polymerization was detected in the produced materials. Thus, despite the promising results, methods to obtain increased protein polymerization should be searched for. Therefore, binding agents, additives, or pretreatment of the rapeseed residuals are needed, or the proteins have to be purified, in order to generate a better polymerization of the proteins.