Table of Contents
ISRN Mathematical Physics
Volume 2012 (2012), Article ID 197068, 11 pages
http://dx.doi.org/10.5402/2012/197068
Research Article

Approximate Solutions to Time-Fractional Schrödinger Equation via Homotopy Analysis Method

1Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
2Abdul Salam School of Mathematical Sciences, GC University, Lahore, Pakistan
3Department of Mathematics, NED University of Engineering and Technology, Karachi 75270, Pakistan

Received 21 October 2011; Accepted 13 November 2011

Academic Editors: P. Roy and W.-H. Steeb

Copyright © 2012 Najeeb Alam Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Carpinteri and F. Mainardi, Fractals Fractional Calculus in Continuum Mechanics, Springer, New York, NY, USA, 1997.
  2. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.
  3. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.
  4. I. Podlubny, Fractional Differential Equations, Acaddemic Press, San Diego, Calif, USA, 1999.
  5. K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order,” Electronic Transactions on Numerical Analysis, vol. 5, pp. 1–6, 1997. View at Google Scholar · View at Scopus
  6. J. Cang, Y. Tan, H. Xu, and S. J. Liao, “Series solutions of non-linear Riccati differential equations with fractional order,” Chaos, Solitons and Fractals, vol. 40, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. N. A. Khan, A. Ara, S. A. Ali, and A. Mahmood, “Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 9, pp. 1127–1134, 2009. View at Google Scholar · View at Scopus
  8. N. A. Khan, A. Ara, and A. Mahmood, “Approximate solution of time-fractional chemical engineering equations: a comparative study,” International Journal of Chemical Reactor Engineering, vol. 8, article A19, 2010. View at Google Scholar · View at Scopus
  9. A. Mahmood, S. Parveen, A. Ara, and N. A. Khan, “Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3309–3319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mahmood, C. Fetecau, N. A. Khan, and M. Jamil, “Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders,” Acta Mechanica Sinica, vol. 26, no. 4, pp. 541–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Borhanifar and R. Abazari, “Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method,” Optics Communications, vol. 283, no. 10, pp. 2026–2031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Wang, “Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations,” Applied Mathematics and Computation, vol. 170, no. 1, pp. 17–35, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. S. Khuri, “A new approach to the cubic Schrödinger equation: an application of the decomposition technique,” Applied Mathematics and Computation, vol. 97, pp. 251–254, 1998. View at Google Scholar
  14. A. M. Wazwaz, “A study on linear and nonlinear Schrodinger equations by the variational iteration method,” Chaos, Solitons and Fractals, vol. 37, no. 4, pp. 1136–1142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Sadighi and D. D. Ganji, “Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods,” Physics Letters A, vol. 372, no. 4, pp. 465–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. V. Ravi Kanth and K. Aruna, “Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations,” Chaos, Solitons and Fractals, vol. 41, no. 5, pp. 2277–2281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, 2003.
  18. S. J. Liao and K. F. Cheung, “Homotopy analysis of nonlinear progressive waves in deep water,” Journal of Engineering Mathematics, vol. 45, no. 2, pp. 105–116, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. L. Song and H. Zhang, “Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation,” Physics Letters A, vol. 367, no. 1-2, pp. 88–94, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  20. N. A. Khan, A. Ara, M. Afzal, and A. Khan, “Analytical aspect of fourth-order parabolic partial differential equations with variable coefficients,” Mathematical and Computational Applications, vol. 15, no. 3, pp. 481–489, 2010. View at Google Scholar · View at Scopus