Table of Contents
ISRN Molecular Biology
Volume 2012, Article ID 219656, 6 pages
http://dx.doi.org/10.5402/2012/219656
Research Article

Identification and Molecular Characterization of Molluskin, a Histone-H2A-Derived Antimicrobial Peptide from Molluscs

Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kerala, Kochi 682016, India

Received 19 August 2012; Accepted 10 September 2012

Academic Editors: M. Greenwood and D. P. Romancino

Copyright © 2012 Naveen Sathyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Kelley, “Using host defenses to fight infectious diseases,” Nature Biotechnology, vol. 14, no. 5, pp. 587–590, 1996. View at Google Scholar · View at Scopus
  2. H. Kawasaki and S. Iwamuro, “Potential roles of histones in host defense as antimicrobial agents,” Infectious Disorders, vol. 8, no. 3, pp. 195–205, 2008. View at Google Scholar · View at Scopus
  3. C. B. Park, M. S. Kim, and S. C. Kim, “A novel antimicrobial peptide from Bufo bufo gargarizans,” Biochemical and Biophysical Research Communications, vol. 218, no. 1, pp. 408–413, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Y. Park, C. B. Park, M. S. Kim, and S. C. Kim, “Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus,” FEBS Letters, vol. 437, no. 3, pp. 258–262, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Richards, D. B. O'Neil, P. Thibault, and K. V. Ewart, “Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar),” Biochemical and Biophysical Research Communications, vol. 284, no. 3, pp. 549–555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Birkemo, T. Lüders, Ø. Andersen, I. F. Nes, and J. Nissen-Meyer, “Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.),” Biochimica et Biophysica Acta, vol. 1646, no. 1-2, pp. 207–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. O. Fernandes, G. D. Kemp, G. G. Molle, and V. J. Smith, “Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss,” Biochemical Journal, vol. 368, no. 2, pp. 611–620, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Patat, R. B. Carnegie, C. Kingsbury, P. S. Gross, R. Chapman, and K. L. Schey, “Antimicrobial activity of histones from hemocytes of the Pacific white shrimp,” European Journal of Biochemistry, vol. 271, no. 23-24, pp. 4825–4833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Li, L. Song, J. Zhao et al., “Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri,” Fish and Shellfish Immunology, vol. 22, no. 6, pp. 663–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Sook, J. M. Kim, I. Y. Park et al., “Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide,” Peptides, vol. 29, no. 7, pp. 1102–1108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. De Zoysa, C. Nikapitiya, I. Whang, J. S. Lee, and J. Lee, “Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus),” Fish and Shellfish Immunology, vol. 27, no. 5, pp. 639–646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Sathyan, R. Philip, E. R. Chaithanya, P. R. A. Kumar, and S. P. Antony, “Identification of a histone derived, putative antimicrobial peptide Himanturin from round whip ray Himantura pastinacoides and its phylogenetic significance,” Results in Immunology, vol. 2, pp. 120–124, 2012. View at Google Scholar
  13. N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, “SWISS-MODEL: an automated protein homology-modeling server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3381–3385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Tincu and S. W. Taylor, “Antimicrobial peptides from marine invertebrates,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 10, pp. 3645–3654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Kim, H. Yoon, I. Minn et al., “Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I,” Journal of Immunology, vol. 165, no. 6, pp. 3268–3274, 2000. View at Google Scholar · View at Scopus
  18. J. H. Cho, I. Y. Park, H. S. Kim, W. T. Lee, M. S. Kim, and S. C. Kim, “Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish,” The FASEB Journal, vol. 16, no. 3, pp. 429–431, 2002. View at Google Scholar · View at Scopus
  19. B. Lemaitre, J. M. Reichhart, and J. A. Hoffmann, “Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14614–14619, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Hoffmann and J. M. Reichhart, “Drosophila innate immunity: an evolutionary perspective,” Nature Immunology, vol. 3, no. 2, pp. 121–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. H. Wang, Z. H. Gu, X. D. Huang et al., “An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes,” Molecular Immunology, vol. 46, no. 8-9, pp. 1897–1904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. S. Yang, Z. X. Yin, J. X. Liao et al., “A Toll receptor in shrimp,” Molecular Immunology, vol. 44, no. 8, pp. 1999–2008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. H. Wang, J. P. Liang, Z. H. Gu et al., “Molecular cloning, characterization and expression analysis of two novel Tolls (LvToll2 and LvToll3) and three putative Spatzle-like Toll ligands (LvSpz1-3) from Litopenaeus vannamei,” Developmental & Comparative Immunology, vol. 36, pp. 359–371, 2012. View at Google Scholar
  24. D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 2, pp. 357–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Cho, B. H. Sung, and S. C. Kim, “Buforins: histone H2A-derived antimicrobial peptides from toad stomach,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1564–1569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kobayashi, K. Takeshima, C. B. Park, S. C. Kim, and K. Matsuzaki, “Interactions of the novel anfimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor,” Biochemistry, vol. 39, no. 29, pp. 8648–8654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C. B. Park, K. S. Yi, K. Matsuzaki, M. S. Kim, and S. C. Kim, “Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8245–8250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. E. T. Uyterhoeven, C. H. Butler, D. Ko, and D. E. Elmore, “Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II,” FEBS Letters, vol. 582, no. 12, pp. 1715–1718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Takeshima, A. Chikushi, K. K. Lee, S. Yonehara, and K. Matsuzaki, “Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes,” Journal of Biological Chemistry, vol. 278, no. 2, pp. 1310–1315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. G. S. Yi, C. B. Park, S. C. Kim, and C. Cheong, “Solution structure of an antimicrobial peptide buforin II,” FEBS Letters, vol. 398, no. 1, pp. 87–90, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. H. S. Lee, C. B. Park, J. M. Kim et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Letters, vol. 271, no. 1, pp. 47–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. H. Thatcher and M. A. Gorovsky, “Phylogenetic analysis of the core histones H2A, H2B, H3, and H4,” Nucleic Acids Research, vol. 22, no. 2, pp. 174–179, 1994. View at Google Scholar · View at Scopus