Table of Contents
ISRN Civil Engineering
Volume 2012 (2012), Article ID 231674, 13 pages
http://dx.doi.org/10.5402/2012/231674
Research Article

Fatigue Damage Estimation in Existing Railway Steel Bridges by Detailed Loading History Analysis

Department of Structural and Transportation Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy

Received 6 February 2012; Accepted 2 April 2012

Academic Editors: Z. Li and I. Raftoyiannis

Copyright © 2012 Alessio Pipinato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Pellegrino, A. Pipinato, and C. Modena, “A simplified management procedure for bridge network maintenance,” Structure and Infrastructure Engineering, vol. 7, no. 5, pp. 341–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Pipinato, C. Pellegrino, and C. Modena, “Fatigue assessment of highway steel bridges in presence of seismic loading,” Engineering Structures, vol. 33, no. 1, pp. 202–209, 2010. View at Google Scholar
  3. A. Pipinato, C. Pellegrino, O. S. Bursi, and C. Modena, “High-cycle fatigue behavior of riveted connections for railway metal bridges,” Journal of Constructional Steel Research, vol. 65, no. 12, pp. 2167–2175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pipinato, M. Molinari, C. Pellegrino, O. Bursi, and C. Modena, “Fatigue tests on riveted steel elements taken from a railway bridge,” Structure and Infrastructure Engineering, vol. 7, no. 12, pp. 907–920, 2009. View at Publisher · View at Google Scholar
  5. A. Pipinato and C. Modena, “Structural analysis and fatigue reliability assessment of the paderno bridge,” Practice Periodical on Structural Design and Construction, vol. 15, no. 2, pp. 109–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pipinato, C. Pellegrino, and C. Modena, “Assessment procedure and rehabilitation criteria for the riveted railway Adige bridge,” Structure and Infrastructure Engineering, vol. 8, no. 8, pp. 747–764, 2010. View at Publisher · View at Google Scholar
  7. A. Pipinato, “Step level procedure for remaining fatigue life evaluation of one railway bridge,” Baltic Journal of Road and Bridge Engineering, vol. 5, no. 1, pp. 28–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Bruhwiler, I. F. C. Smith, and M. A. Hirt, “Fatigue and fracture of riveted bridge members,” Journal of Structural Engineering, vol. 116, no. 1, pp. 198–214, 1990. View at Google Scholar · View at Scopus
  9. G. L. Kulak, “Discussion of fatigue strength of riveted bridge members, by J.W. Fisher, B.T. Yen, D. Wang,” Journal of Structural Engineering, vol. 116, no. 11, pp. 2968–2981, 1990. View at Google Scholar · View at Scopus
  10. B. Akesson and B. Edlund, “Remaining fatigue life of riveted railway bridges,” Stahlbau, vol. 65, no. 11, pp. 429–436, 1996. View at Google Scholar · View at Scopus
  11. J. D. Di Battista, D. E. J. Adamson, and G. L. Kulak, “Fatigue strength of riveted connections,” Journal of Structural Engineering, vol. 124, no. 7, pp. 792–797, 1998. View at Google Scholar · View at Scopus
  12. O. S. Bursi, F. Ferrario, and V. Fontanari, “Non-linear analysis of the low-cycle fracture behaviour of isolated Tee stub connections,” Computers and Structures, vol. 80, no. 27–30, pp. 2333–2360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. E. B. Matar and R. Greiner, “Fatigue test for a riveted steel railway bridge in Salzburg,” Structural Engineering International, vol. 16, no. 3, pp. 252–260, 2006. View at Google Scholar
  14. M. I. Boulent, T. D. Righiniotis, and M. K. Chryssanthopoulos, “Probabilistic fatigue evaluation of riveted railway bridges,” Journal of Bridge Engineering, vol. 13, no. 3, pp. 237–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Albrecht and A. Lenwari, “Design of prestressing tendons for strengthening steel truss bridges,” Journal of Bridge Engineering, vol. 13, no. 5, pp. 449–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Kühn, M. Lukič, A. Nussbaumer et al., “Assessment of existing steel structures, Recommendations for estimation of the remaining fatigue life,” Joint Research Centre-European Convention for Constructional Steelwork Report, 2008. View at Google Scholar
  17. P. Albrecht and A. Lenwari, “Variable-amplitude fatigue strength of structural steel bridge details: review and simplified model,” Journal of Bridge Engineering, vol. 14, no. 4, pp. 226–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Brühwiler, M. A. Hirt, and V. Fontanari, “Umgang mit genieteten Bahnbrücken von hohem kulturellem Wert,” Stahlbau, vol. 79, no. 3, pp. 209–219, 2010. View at Google Scholar
  19. American Society of Civil Engineers (ASCE), “Committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division. Fatigue reliability 1–4,” Journal of Structural Division, vol. 108, pp. 83–88, 1982. View at Google Scholar
  20. W. G. Byers, M. J. Marley, J. Mohammadi, R. J. Nielsen, and S. Sarkani, “Fatigue reliability reassessment applications: state-of-the-art paper,” Journal of Structural Engineering, vol. 123, no. 3, pp. 277–285, 1997. View at Google Scholar · View at Scopus
  21. UIC, Leaflets 779-1 R: Recommendations for the Evaluation of the Load Carrying Capacity of Existing Steel Bridges, International Union of Railways, Utrecht, The Netherlands, 1988.
  22. EN 1991-2, Eurocode 1: Action on Structures—Part 2—Load on Bridges, Comité Européen de Normalisation (CEN), Brussels, Belgium, 2005.
  23. CER, International railway traffic CER, Community of european railway and infrastructure companies, 2009.
  24. A. Keller, E. Brühwiler, and M. A. Hirt, “Assessment of a 135 year old riveted railway bridge,” in Extending the Lifespan of Structures, vol. 73/2, pp. 1029–1034, IABSE Symposium Report, San Francisco, Calif, USA, 1995. View at Google Scholar
  25. Instruction 44/F, Verifica a Fatica dei Ponti Ferroviari, Technical Code of Italian Railway Authority, Milan, Italy, 1992.
  26. C. A. Cornell, “Bounds on the reliability of structural systems,” Journal of Structural Division, vol. 93, pp. 171–200, 1967. View at Google Scholar
  27. A. Coppe, R. T. Haftka, N. H. Kim, and C. Bes, “A statistical model for estimating probability of crack detection,” in Proceedings of the International Conference on Prognostics and Health Management (PHM '08), pp. 1–5, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Sustainable Bridges, Guideline for Load and Resistance Assessment of Existing European Railway Bridges-Advices on the use of advanced methods. European research project under the EU 6th framework programme, http://www.sustainablebridges.net/, 2006.
  29. ISO 13822, Basis for Design of Structures-Assessment of Existing Structures, ISO-International Organization for Standardization, Geneva, Switzerland, 2010.
  30. P. Kunz, Probabilistisches verfahren zur beurteilung der ermuedungssicherheit bestehender bruecken aus stahl, Ph.D. thesis Number 1023, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1992.
  31. M. S. Cheung and W. C. Li, “Probabilistic fatigue and fracture analyses of steel bridges,” Structural Safety, vol. 25, no. 3, pp. 245–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. O. Harris, “Probabilistic fracture mechanics,” in Probabilistic Structural Mechanics Handbook, C. Sundararajan, Ed., pp. 106–145, Chapman & Hall, New York, NY, USA, 1995. View at Google Scholar
  33. K. Ortiz and A. S. Kiremidjian, “Stochastic modeling of fatigue crack growth,” Engineering Fracture Mechanics, vol. 29, no. 3, pp. 317–334, 1988. View at Google Scholar · View at Scopus
  34. G. F. Oswald and G. I. Schuëller, “Reliability of deteriorating structures,” Engineering Fracture Mechanics, vol. 20, no. 3, pp. 479–488, 1984. View at Google Scholar · View at Scopus
  35. J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage, Wiley, New York, NY, USA, 1985.
  36. P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, no. 4, pp. 528–534, 1963. View at Google Scholar
  37. Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, UK, 1987.
  38. K. Yamada, C. Qiuliang, and O. Naoki, “Fatigue crackgrowth measurements under spectrum loading,” Engineering Fracture Mechanics, vol. 66, no. 5, pp. 483–497, 2000. View at Publisher · View at Google Scholar
  39. S. K. Raju, F. Moses, and C. G. Schilling, “Reliability calibration of fatigue evaluation and design procedures,” Journal of Structural Engineering, vol. 116, no. 5, pp. 1356–1369, 1990. View at Google Scholar · View at Scopus
  40. M. A. Miner, “Cumulative damage in fatigue,” Journal of Applied Mechanics, vol. 12, no. 3, pp. A159–A164, 1945. View at Google Scholar
  41. EN 1993-1-9, Eurocode 3: Design of Steel Structures—Part 1–9: Fatigue, Comité Européen de Normalisation (CEN), Brussels, Belgium, 2005.
  42. A. Keller, E. Bruhwiler, and M. A. Hirt, Assessment of a 135 Year Old Riveted Railway Bridge, IABSE Colloquium, Copenhagen, Denmark, 1993.
  43. U. Bremen, Amelioration du comportement a la fatigue d'assemblages soudes: etudes de modelisation de l'effet de contraintes residuelles, Graduation thesis, École Polytechnique Fédérale de Lausanne, Vaud, Switzerland, 1989.
  44. American Society for Testing and Materials (ASTM), ASTM E1049-85: Standard Practices for Cycle Counting in Fatigue Analysis, American Society for Testing and Materials, New York, NY, USA, 2005.
  45. A. Pipinato, High-cycle fatigue behaviour of historical metal riveted railway bridges, Ph.D. thesis, University of Padova, Padova, Italy, 2008.