Table of Contents
ISRN Physical Chemistry
Volume 2012, Article ID 243741, 11 pages
http://dx.doi.org/10.5402/2012/243741
Research Article

Combined FTIR Matrix Isolation and Density Functional Studies of Indole-3-Pyruvic Acid Molecule. Spectroscopic Evidence of Gas-Phase Tautomerism

1Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
2Istituto di Cristallografia (IC), Sezione Roma, Area Della Ricerca, Via Salaria Km 29,300, Montelibretti, 00016 Monterotondo, Italy
3Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), via dei Tizii 6, 00185 Roma, Italy
4Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Sezione, Dipartimento di Chimica, Università di Roma “La Sapienza”, Pizzalo Alido Moro 5, 00185 Roma, Italy

Received 12 January 2012; Accepted 13 February 2012

Academic Editors: T. Kar, A. Liwo, and T. Yamaguchi

Copyright © 2012 Luigi Bencivenni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. El-Abyad, M. A. El-Sayed, A.-R. El-Shanshoury, and M. Farid, “Optimization of culture conditions for indole-3-pyruvic acid production by Streptomyces griseoflavus,” Canadian Journal of Microbiology, vol. 40, no. 9, pp. 754–760, 1994. View at Google Scholar
  2. J. Koga, K. Syono, T. Ichikawa, and T. Adachi, “Involvement of L-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae,” Biochimica et Biophysica Acta, vol. 1209, no. 2, pp. 241–247, 1994. View at Google Scholar · View at Scopus
  3. M. N. Perkins and T. W. Stone, “Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo,” Experimental Neurology, vol. 88, no. 3, pp. 570–579, 1985. View at Google Scholar · View at Scopus
  4. V. Politi, M. V. Lavaggi, G. Di Stazio, and A. Margonelli, “Indole-3-pyruvic acid as a direct precursor of kynurenic acid,” Advances in Experimental Medicine and Biology, vol. 294, pp. 515–518, 1991. View at Google Scholar · View at Scopus
  5. V. Politi, S. D'Alessio, G. Di Stazio, and G. De Luca, “Antioxidant properties of indole-3-pyruvic acid,” Advances in Experimental Medicine and Biology, vol. 398, pp. 291–298, 1996. View at Google Scholar · View at Scopus
  6. B. Bartolini, C. Corniello, A. Sella, F. Somma, and V. Politi, “The enol tautomer of indole-3-pyruvic acid as a biological switch in stress responses,” Advances in Experimental Medicine and Biology, vol. 527, pp. 601–608, 2003. View at Google Scholar · View at Scopus
  7. N. Okabe and Y. Adachi, “2-Hydroxy-3-(1H-indol-3-yl)propenoic acid,” Acta Crystallographica Section C, vol. 54, no. 9, pp. 1330–1331, 1998. View at Google Scholar · View at Scopus
  8. G. Nazario and K. Schwarz, “Infrared spectra of indolepyruvic acid. Study of the keto-enol equilibrium in different organic solvents,” Archives of Biochemistry and Biophysics, vol. 123, no. 3, pp. 457–461, 1968. View at Google Scholar · View at Scopus
  9. J. Bai, X. Liang, Y. H. Liu, Y. Zhu, and D. M. Lubman, “Characterization of two new matrices for matrix-assisted laser desorption/ionization mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 10, no. 7, pp. 839–844, 1996. View at Google Scholar · View at Scopus
  10. R. Barraza, M. Campos-Vallette, K. Figueroa, V. Manríquez, and V. C. Vargas, “Hydrogen bond effect on the molecular vibrations of indole,” Spectrochimica Acta Part A, vol. 46, no. 9, pp. 1375–1380, 1990. View at Google Scholar · View at Scopus
  11. I. D. Reva, S. G. Stepanian, L. Adamowicz, and R. Fausto, “Combined FTIR matrix isolation and Ab initio studies of pyruvic acid: proof for existence of the second conformer,” Journal of Physical Chemistry A, vol. 105, no. 19, pp. 4773–4780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Cao and G. Fischer, “Infrared spectral, structural, and conformational studies of zwitterionic L-tryptophan,” Journal of Physical Chemistry A, vol. 103, no. 48, pp. 9995–10003, 1999. View at Google Scholar · View at Scopus
  13. A. Kaczor, I. D. Reva, L. M. Proniewicz, and R. Fausto, “Matrix-isolated monomeric tryptophan: electrostatic interactions as nontrivial factors stabilizing conformers,” Journal of Physical Chemistry A, vol. 111, no. 15, pp. 2957–2965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision C.02, Gaussian, Wallingford, Conn, USA, 2004.
  15. G. Schaftenaar and J. H. Noordik, “Molden: a pre- and post-processing program for molecular and electronic structures,” Journal of Computer-Aided Molecular Design, vol. 14, no. 2, pp. 123–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland, 2004.
  17. A. Kaczor, I. D. Reva, L. M. Proniewicz, and R. Fausto, “Importance of entropy in the conformational equilibrium of phenylalanine: a matrix-isolation infrared spectroscopy and density functional theory study,” Journal of Physical Chemistry A, vol. 110, no. 7, pp. 2360–2370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. D. Klots and W. B. Collier, “Heteroatom derivatives of indene Part 3. Vibrational spectra of benzoxazole, benzofuran, and indole,” Spectrochimica Acta Part A, vol. 51, no. 8, pp. 1291–1316, 1995. View at Google Scholar · View at Scopus