Table of Contents
ISRN Veterinary Science
Volume 2012 (2012), Article ID 245138, 7 pages
http://dx.doi.org/10.5402/2012/245138
Research Article

A Two-Years' Survey on the Prevalence of Tuberculosis Caused by Mycobacterium caprae in Red Deer (Cervus elaphus) in the Tyrol, Austria

1Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Innsbruck, Technikerstrasse 70, 6020 Innsbruck, Austria
2Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Fritz-Pregl-Straβe 3/3, 6020 Innsbruck, Austria
3Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, Robert Koch Gasse 17, 2340 Mödling, Austria
4Austrian Agency for Health and Food Safety (AGES), Data, Statistics and Risk Assessment, 8020 Graz, Austria
5Veterinary Department, Regional Government of the Tyrol, 6600 Reutte, Austria
6Institute for Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz, 1210 Vienna, Austria

Received 28 June 2012; Accepted 8 August 2012

Academic Editors: O. A. Dellagostin and V. Ritacco

Copyright © 2012 Karl Schoepf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Prodinger, A. Brandstätter, L. Naumann et al., “Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping,” Journal of Clinical Microbiology, vol. 43, no. 10, pp. 4984–4992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. W. M. Prodinger, A. Eigentler, F. Allerberger, M. Schönbauer, and W. Glawischnig, “Infection of red deer, cattle, and humans with Mycobacterium boris subsp. caprae in western Austria,” Journal of Clinical Microbiology, vol. 40, no. 6, pp. 2270–2272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Aranaz, D. Cousins, A. Mateos, and L. Domínguez, “Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 6, pp. 1785–1789, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Kubica, S. Rüsch-Gerdes, and S. Niemann, “Mycobactetium bovis subsp. caprae caused one-third of human M. bovis-associated tuberculosis cases reported in Germany between 1999 and 2001,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3070–3077, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. European food safety authority (EFSA), “Scientific review on Tuberculosis in wildlife in the EU.,” http://www.efsa.europa.eu/de/supporting/pub/12e.htm, 2009.
  6. C. Gortazar, J. Vicente, S. Samper et al., “Molecular characterization of Mycobacterium tuberculosis complex isolates from wild ungulates in south-central Spain,” Veterinary Research, vol. 36, no. 1, pp. 43–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Balseiro, A. Oleaga, R. Orusa et al., “Tuberculosis in roe deer from Spain and Italy,” Veterinary Record, vol. 164, no. 15, pp. 468–470, 2009. View at Google Scholar · View at Scopus
  8. G. Zanella, B. Durand, J. Hars et al., “Mycobacterium bovis in wildlife in France,” Journal of Wildlife Diseases, vol. 44, no. 1, pp. 99–108, 2008. View at Google Scholar · View at Scopus
  9. R. S. Clifton-Hadley and J. W. Wilesmith, “Tuberculosis in deer: a review,” Veterinary Record, vol. 129, no. 1, pp. 5–12, 1991. View at Google Scholar · View at Scopus
  10. R. J. Delahay, C. L. Cheeseman, and R. S. Clifton-Hadley, “Wildlife disease reservoirs: the epidemiology of Mycobacterium bovis infection in the Eeuropean badger (Meles meles) and other British mammals,” Tuberculosis, vol. 81, no. 1-2, pp. 43–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Vicente, U. Höfle, J. M. Garrido et al., “Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain,” Veterinary Research, vol. 37, no. 1, pp. 107–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bischofberger and A. Nabholz, “Tuberkulöses Wild als Ursache von Neuinfektionen in Rindviehbeständen,” Schweiz Arch Tierheilkd, vol. 106, pp. 759–777, 1964. View at Google Scholar
  13. D. Wyss, M. Giacometti, J. Nicolet, A. Burnens, G. E. Pfyffer, and L. Audigé, “Farm and slaughter survey of bovine tuberculosis in captive deer in Switzerland,” Veterinary Record, vol. 147, no. 25, pp. 713–717, 2000. View at Google Scholar · View at Scopus
  14. A. Aranaz, L. De Juan, N. Montero et al., “Bovine tuberculosis (Mycobacterium bovis) in wildlife in Spain,” Journal of Clinical Microbiology, vol. 42, no. 6, pp. 2602–2608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Weikel, W. Glawischnig, E. Hofer, and K. Schoepf, “Tuberkulose bei einem Reh (Capreolus capreolus) aus dem Bundesland Tirol,” Wiener tierärztliche Monatsschrift, vol. 97, pp. 287–289, 2010. View at Google Scholar
  16. G. W. De Lisle, C. G. Mackintosh, and R. G. Bengis, “Mycobacterium bovis in free-living and captive wildlife, including farmed deer,” OIE Revue Scientifique et Technique, vol. 20, no. 1, pp. 86–111, 2001. View at Google Scholar · View at Scopus
  17. I. W. Lugton, P. R. Wilson, R. S. Morris, J. F. T. Griffin, and G. W. De Lisle, “Natural infection of red deer with bovine tuberculosis,” New Zealand Veterinary Journal, vol. 45, no. 1, pp. 19–26, 1997. View at Google Scholar · View at Scopus
  18. C. G. Mackintosh, G. W. De Lisle, D. M. Collins, and J. F. T. Griffin, “Mycobacterial diseases of deer,” New Zealand Veterinary Journal, vol. 52, no. 4, pp. 163–174, 2004. View at Google Scholar · View at Scopus
  19. D. J. O'Brien, S. M. Schmitt, J. S. Fierke et al., “Epidemiology of Mycobacterium bovis in free-ranging white-tailed deer, Michigan, USA, 1995–2000,” Preventive Veterinary Medicine, vol. 54, no. 1, pp. 47–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. S. Bruning-Fann, S. M. Schmitt, S. D. Fitzgerald et al., “Bovine tuberculosis in free-ranging carnivores from Michigan,” Journal of Wildlife Diseases, vol. 37, no. 1, pp. 58–64, 2001. View at Google Scholar · View at Scopus
  21. S. M. Schmitt, D. J. O'Brien, C. S. Bruning-Fann, and S. D. Fitzgerald, “Bovine tuberculosis in Michigan wildlife and livestock,” Annals of the New York Academy of Sciences, vol. 969, pp. 262–268, 2002. View at Google Scholar · View at Scopus
  22. A. R. Renwick, P. C. L. White, and R. G. Bengis, “Bovine tuberculosis in southern African wildlife: a multi-species host-pathogen system,” Epidemiology and Infection, vol. 135, no. 4, pp. 529–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. L. Corner, “The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 303–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. Okafor, D. L. Grooms, C. S. Bruning-Fann, J. J. Averill, and J. B. Kaneene, “Descriptive epidemiology of bovine tuberculosis in michigan (1975–2010): lessons learned,” Veterinary Medicine International, vol. 2011, Article ID 874924, 13 pages, 2011. View at Publisher · View at Google Scholar
  25. G. Wobeser, “Bovine Tuberculosis in Canadian wildlife: an updated history,” Canadian Veterinary Journal, vol. 50, no. 11, pp. 1169–1176, 2009. View at Google Scholar · View at Scopus
  26. G. Bölske, L. Englund, H. Wahlström, G. W. de Lisle, D. M. Collins, and P. S. Croston, “Bovine tuberculosis in Swedish deer farms: epidemiological investigations and tracing using restriction fragment analysis,” Veterinary Record, vol. 136, no. 16, pp. 414–417, 1995. View at Google Scholar · View at Scopus
  27. W. Glawischnig, F. Allerberger, C. Messner, M. Schönbauer, and Prodinger W. M., “Tuberkulose-Endemie bei freilebendem Rotwild (Cervus elaphus hippelaphus) in den nördlichen Kalkalpen,” Wiener tierärztliche Monatsschrift, vol. 90, pp. 38–44, 2003. View at Google Scholar
  28. A. Somoskovi, J. Dormandy, J. Rivenburg, M. Pedrosa, M. McBride, and M. Salfinger, “Direct comparison of the GenoType MTBC and genomic deletion assays in terms of ability to distinguish between members of the Mycobacterium tuberculosis complex in clinical isolates and in clinical specimens,” Journal of Clinical Microbiology, vol. 46, no. 5, pp. 1854–1857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Kamerbeek, L. Schouls, A. Kolk et al., “Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology,” Journal of Clinical Microbiology, vol. 35, no. 4, pp. 907–914, 1997. View at Google Scholar · View at Scopus
  30. E. Mazars, S. Lesjean, A. L. Banuls et al., “High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1901–1906, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Supply, C. Allix, S. Lesjean et al., “Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4498–4510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Van Deutekom, P. Supply, P. E. W. De Haas et al., “Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4473–4479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. H. Smith and P. Upton, “Naming spoligotype patterns for the RD9-deleted lineage of the Mycobacterium tuberculosis complex,” Infection, Genetics and Evolution, vol. 12, pp. 873–876, 2012. View at Google Scholar
  34. E. M. Gerstmair, Validierung molekularbiologischer und immunologischer Nachweisverfahren für die Tuberkulose bei Rindern und Tuberkulosemonitoring beim Rotwild. Inaugural dissertation in Veterinary Medicine [Inaugural dissertation in Veterinary Medicine], Ludwig-Maximilian-University, Munich, Germany, 2011.
  35. Z. Cvetnic, V. Katalinic-Jankovic, B. Sostaric et al., “Mycobacterium caprae in cattle and humans in Croatia,” International Journal of Tuberculosis and Lung Disease, vol. 11, no. 6, pp. 652–658, 2007. View at Google Scholar · View at Scopus
  36. M. V. Palmer, W. R. Waters, and D. L. Whipple, “Shared feed as a means of deer-to-deer transmission of Mycobacterium bovis,” Journal of Wildlife Diseases, vol. 40, no. 1, pp. 87–91, 2004. View at Google Scholar · View at Scopus
  37. J. S. Nishi, T. Shury, and B. T. Elkin, “Wildlife reservoirs for bovine tuberculosis (Mycobacterium bovis) in Canada: strategies for management and research,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 325–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Erler, G. Martin, K. Sachse et al., “Molecular Fingerprinting of Mycobacterium bovis subsp. caprae Isolates from Central Europe,” Journal of Clinical Microbiology, vol. 42, no. 5, pp. 2234–2238, 2004. View at Publisher · View at Google Scholar · View at Scopus