Abstract

We consider the 2D liquid crystal systems, which consists of Navier-Stokes system coupled with wave maps or biharmonic wave maps, respectively. By logarithmic Sobolev inequalities, we obtain a blow-up criterion 𝑑,𝜕𝑡𝑑𝐿1̇𝐵(0,𝑇;0,(2)) for the case with wave maps, and we prove the existence of a global-in-time strong solutions for the case with biharmonic wave maps.

1. Introduction

First, we consider the following simplified liquid crystal flows in two space dimensions [1]:𝜕𝑡𝑢+𝑢𝑢+𝜋Δ𝑢=𝑘𝜕𝑡𝑑𝑘𝑑𝑘,𝜕(1.1)div𝑢=0,(1.2)2𝑡||||𝑑+𝑢𝑑Δ𝑑=𝑑𝑑2||𝜕𝑡𝑑||2,||𝑑||=1,(1.3)𝑢,𝑑,𝜕𝑡𝑑𝑢(𝑥,0)=0,𝑑0,𝑑1(𝑥),𝑥2,||𝑑0||=1,𝑑0𝑑1=0,(1.4) where 𝑢 is the velocity, 𝜋 is the pressure, and 𝑑 represents the macroscopic average of the liquid crystal orientation field with values in the unit circle.

The first two equations (1.1) and (1.2) are the well-known Navier-Stokes system with the Lorentz force 𝑘𝜕𝑡𝑑𝑘𝑑𝑘. The last equation (1.3) is the well-known wave maps when 𝑢=0.

It is a simple matter to show that the system (1.1)–(1.4) has a unique local-in-time smooth solution when 𝑢0,𝑑0,𝑑1𝐻1+𝑠(2) with 𝑠>0,div𝑢0=0,|𝑑0|=1,𝑑0𝑑1=0 in 2. The aim of this paper is to study the regularity criterion of smooth solutions to the problem (1.1)–(1.4). We will prove the following.

Theorem 1.1. Let 𝑢0,𝑑0,𝑑1𝐻1+𝑠(2) with 𝑠>0,div𝑢0=0,|𝑑0|=1,𝑑0𝑑1=0 in 2 and let (𝑢,𝑑) be a smooth solution of (1.1)–(1.4) on some interval [0,𝑇] with 0<𝑇<. Assume that 𝑑,𝜕𝑡𝑑𝐿1̇𝐵0,𝑇;0,2.(1.5) Then the solution (𝑢,𝑑) can be extended beyond 𝑇>0.

̇𝐵0, is the homogeneous Besov space. We have 𝐿̇𝐵𝐵𝑀𝑂0,; see Triebel [2].

In the proof of Theorem 1.1, we will use the logarithmic Sobolev inequalities [36]:𝑢𝐿𝐶𝑢𝐻1log1/2𝑒+𝑢𝐻1+𝑠,(1.6)𝑑𝐿𝐶1+𝑑̇𝐵0,log𝑒+𝑑𝐻1+𝑠𝜕,(1.7)𝑡𝑑𝐿𝜕𝐶1+𝑡𝑑̇𝐵0,𝜕log𝑒+𝑡𝑑𝐻1+𝑠,(1.8) for 𝑠>0, and the Gagliardo-Nirenberg inequalities:𝑤𝐿4𝐶𝑤𝛼𝐿2Λ1+𝑠𝑤𝐿1𝛼2,Λ𝑠𝑤𝐿4𝐶𝑤𝐿1𝛼2Λ1+𝑠𝑤𝛼𝐿2,(1.9) with Λ=(Δ)1/2,𝛼=1(1/2)(1/(1+𝑠)), and 𝑠>0, and the product estimate due to Kato-Ponce [7]:Λ𝑠(𝑓𝑔)𝐿𝑝𝐶𝑓𝐿𝑝1Λ𝑠𝑔𝐿𝑞1+𝑔𝐿𝑝2Λ𝑠𝑓𝐿𝑞2,(1.10) with 𝑠>0 and 1/𝑝=1/𝑝1+1/𝑞1=1/𝑝2+1/𝑞2.

Motivated by the problem (1.1)–(1.4), we consider the following liquid crystal flows:𝜕𝑡𝑢+𝑢𝑢+𝜋Δ𝑢=𝑘𝜕𝑡𝑑𝑘𝑑𝑘,𝜕(1.11)div𝑢=0,(1.12)2𝑡𝑑+𝑢𝑑+(Δ)2||𝑑||||𝜕𝑑=𝜆𝑑,=1,(1.13)𝜆=𝑡𝑑||2+||||Δ𝑑2||||+Δ𝑑2+2𝑘𝜕𝑘𝑑Δ𝜕𝑘𝑑,(1.14)𝑢,𝑑,𝜕𝑡𝑑𝑢(𝑥,0)=0,𝑑0,𝑑1(𝑥,0),𝑥2,||𝑑0||=1.(1.15) The last two equations (1.13) and (1.14) are the biharmonic wave maps. It is also a simple matter to show that the problem (1.11)–(1.15) has at least one local-in-time strong solution. The aim of this paper is to prove the global-in-time regularity. We obtain the following.

Theorem 1.2. Let 𝑢0𝐻2,(𝑑0,𝑑1)𝐻3×𝐻2 with div𝑢0=0,|𝑑0|=1,𝑑0𝑑1=0 in 2. Then there exists at least a global-in-time smooth solution: 𝑢,𝑑,𝜕𝑡𝑑𝐿0,𝑇;𝐻2×𝐿0,𝑇;𝐻3×𝐿0,𝑇;𝐻2(1.16) for any 𝑇>0.

Remark 1.3. We are unable to prove the uniqueness of strong solutions in Theorem 1.2.

2. Proof of Theorem 1.1

We only need to prove a priori estimates.

Testing (1.1) by 𝑢, using (1.2), we see that12𝑑𝑢𝑑𝑡2||||𝑑𝑥+𝑢2(𝑑𝑥=𝑢)𝑑𝜕𝑡𝑑𝑑𝑥.(2.1)

Testing (1.3) by 𝜕𝑡𝑑, using |𝑑|=1 and 𝑑𝜕𝑡𝑑=0, we find that12𝑑||||𝑑𝑡𝑑2+||𝜕𝑡𝑑||2(𝑑𝑥=𝑢)𝑑𝜕𝑡𝑑𝑑𝑥.(2.2)

Summing up (2.1) and (2.2), we get12𝑑𝑢𝑑𝑡2+||||𝑑2+||𝜕𝑡𝑑||2||||𝑑𝑥+𝑢2𝑑𝑥=0,(2.3) from which we get𝑢2+||||𝑑2+||𝜕𝑡𝑑||2𝑑𝑥+𝑇0||||𝑢2𝑑𝑥𝑑𝑡𝐶.(2.4)

Applying Λ1+𝑠 to (1.1), testing by Λ1+𝑠𝑢, using (1.2) and (1.10), we derive12𝑑||Λ𝑑𝑡1+𝑠𝑢||2||Λ𝑑𝑥+2+𝑠𝑢||2Λ𝑑𝑥=1+𝑠div(𝑢𝑢)Λ1+𝑠Λ𝑢𝑑𝑥+1+𝑠𝜕𝑡𝑑𝑑Λ1+𝑠𝑢𝑑𝑥𝐶𝑢𝐿Λ2+𝑠𝑢𝐿2Λ1+𝑠𝑢𝐿2𝜕+𝐶𝑡𝑑𝐿Λ2+𝑠𝑑𝐿2+𝑑𝐿Λ1+𝑠𝜕𝑡𝑑𝐿2Λ1+𝑠𝑢𝐿212Λ2+𝑠𝑢2𝐿2+𝐶𝑢2𝐿Λ1+𝑠𝑢2𝐿2𝜕+𝐶𝑡𝑑,𝑑𝐿𝑦2+Λ1+𝑠𝑢2𝐿2,(2.5) where𝑦2Λ=1+𝑠𝜕𝑡𝑑2𝐿2+Λ2+𝑠𝑑2𝐿2.(2.6)

Taking Λ1+𝑠 to (1.3), testing by Λ1+𝑠𝜕𝑡𝑑, we have12𝑑𝑦𝑑𝑡2=Λ1+𝑠𝑑||||𝑑2||𝜕𝑡𝑑||2Λ1+𝑠𝜕𝑡Λ𝑑𝑑𝑥1+𝑠(𝑢𝑑)Λ1+𝑠𝜕𝑡𝑑𝑑𝑥=𝐼1+𝐼2.(2.7)

By using (1.10), (2.4), and (1.9), 𝐼1 can be bounded as follows:𝐼1𝐶𝑑𝐿Λ1+𝑠||||𝑑2||𝜕𝑡𝑑||2𝐿2+Λ1+𝑠𝑑𝐿4𝑑𝐿𝑑𝐿4+𝜕𝑡𝑑𝐿𝜕𝑡𝑑𝐿4Λ1+𝑠𝜕𝑡𝑑𝐿2𝐶𝑑𝐿Λ2+𝑠𝑑𝐿2+𝜕𝑡𝑑𝐿Λ1+𝑠𝜕𝑡𝑑𝐿2+𝑐𝑦𝛼𝑑𝐿𝑦1𝛼+𝜕𝑡𝑑𝐿𝑦1𝛼Λ1+𝑠𝜕𝑡𝑑𝐿2𝜕𝐶𝑡𝑑,𝑑𝐿𝑦2.(2.8)

By using (1.10), 𝐼2 can be bounded as𝐼2𝐶𝑢𝐿Λ2+𝑠𝑑𝐿2+𝑑𝐿Λ1+𝑠𝑢𝐿2Λ1+𝑠𝜕𝑡𝑑𝐿2𝐶𝑢𝐿𝑦2+𝐶𝑑𝐿𝑦2+Λ1+𝑠𝑢2𝐿2.(2.9)

Combining (2.5), (2.7), (2.8), and (2.9) and using (1.6), (1.7), (1.8), and the Gronwall lemma, we arrive at𝑢𝐿(0,𝑇;𝐻1+𝑠)+𝑢𝐿2(0,𝑇;𝐻2+𝑠)𝐶,𝑑,𝜕𝑡𝑑𝐿(0,𝑇;𝐻1+𝑠)𝐶.(2.10)

This completes the proof.

3. Proof of Theorem 1.2

For simplicity, we only present a priori estimates.

First, we still have (2.1).

Testing (1.13) by 𝜕𝑡𝑑, using 𝑑𝜕𝑡𝑑=0, we have12𝑑||||𝑑𝑡Δ𝑑2+||𝜕𝑡𝑑||2(𝑑𝑥=𝑢)𝑑𝜕𝑡𝑑𝑑𝑥.(3.1)

Summing up (2.1) and (3.1), we get𝑢2+||||Δ𝑑2+||𝜕𝑡𝑑||2𝑑𝑥+𝑇0||||𝑢21𝑑𝑥𝑑𝑡𝐶,2𝑑||||𝑑𝑡𝑑2𝑑𝑥=Δ𝑑𝜕𝑡𝑑𝑑𝑥Δ𝑑𝐿2𝜕𝑡𝑑𝐿2𝐶,(3.2)

which yields||||𝑑2𝑑𝑥𝐶.(3.3)

Applying Δ to (1.11), testing by Δ𝑢, using (1.2) and (1.10), we deduce that12𝑑||||𝑑𝑡Δ𝑢2||||𝑑𝑥+Δ𝑢2Δ𝜕𝑑𝑥=Δdiv(𝑢𝑢)Δ𝑢𝑑𝑥+𝑡𝑑,𝑑Δ𝑢𝑑𝑥𝐶𝑢𝐿Δ𝑢𝐿2Δ𝑢𝐿2𝜕+𝐶𝑡𝑑𝐿Δ𝑑𝐿2+𝑑𝐿Δ𝜕𝑡𝑑𝐿2Δ𝑢𝐿212Δ𝑢2𝐿2+𝐶𝑢2𝐿Δ𝑢2𝐿2𝜕+𝐶𝑡𝑑𝐿1/22Δ𝜕𝑡𝑑𝐿1/22Δ𝑑𝐿1/22Δ2𝑑𝐿1/22+𝑑𝐿Δ𝜕𝑡𝑑𝐿2Δ𝑢𝐿212Δ𝑢2𝐿2+𝐶𝑢2𝐿Δ𝑢2𝐿2+𝐶𝑦2+𝐶Δ𝑢2𝐿2+𝐶𝑑𝐿𝑦2+Δ𝑢2𝐿2,(3.4) where𝑦2=Δ𝜕𝑡𝑑2𝐿2+Δ2𝑑2𝐿2.(3.5)

Applying Δ to (1.13), we haveΔ𝜕2𝑡𝑑+Δ3𝑑=(𝜆Δ𝑑+2𝜆𝑑+𝑑Δ𝜆)Δ(𝑢𝑑).(3.6)

Since0=Δ𝑑𝜕𝑡𝑑=𝑑Δ𝜕𝑡𝑑+𝜕𝑡𝑑Δ𝑑+2𝑘𝜕𝑘𝑑𝜕𝑘𝜕𝑡𝑑,(3.7) we easily see that𝑑Δ𝜕𝑡𝑑=𝜕𝑡𝑑Δ𝑑+𝜕𝑡||||𝑑2.(3.8)

Testing (3.6) by Δ𝜕𝑡𝑑, using (3.8), we obtain12𝑑𝑦𝑑𝑡2=𝜆Δ𝑑Δ𝜕𝑡𝑑+𝜆2𝑑Δ𝜕𝑡𝜕𝑑+𝑡𝑑Δ𝑑+2𝑑𝜕𝑡𝑑𝑑𝑥Δ(𝑢𝑑)Δ𝜕𝑡𝑑𝑑𝑥=𝐽1+J2.(3.9)

By the same calculations as those in [8], we have𝐽1𝐶1+𝑑𝐿𝑦2𝐶1+𝑑𝐻1𝑦log(𝑒+𝑦)2.(3.10)

By using (1.10), 𝐽2 can be bounded as𝐽2𝐶Δ𝑢𝐿2𝑑𝐿+𝑢𝐿Δ𝑑𝐿2Δ𝜕𝑡𝑑𝐿2𝐶𝑑𝐿𝑦2+Δ𝑢2𝐿2+𝐶𝑢𝐿1/22Δ𝑢𝐿1/22Δ𝑑𝐿1/22Δ2𝑑𝐿1/22Δ𝜕𝑡𝑑𝐿2𝐶𝑑𝐿𝑦2+Δ𝑢2𝐿2+𝐶𝑦2+𝐶Δ𝑢2𝐿2.(3.11)

Combining (3.4), (3.9), (3.10), and (3.11) and using (1.6) and the Gronwall lemma, we conclude that𝑢𝐿(0,𝑇;𝐻2)+𝑢𝐿2(0,𝑇;𝐻3)𝐶,𝑑𝐿(0,𝑇;𝐻3)+𝜕𝑡𝑑𝐿(0,𝑇;𝐻2)𝐶.(3.12)

This completes the proof.

Acknowledgment

This paper is supported by NSFC (no. 11171154).