Table of Contents Author Guidelines Submit a Manuscript
ISRN Geophysics
Volume 2012 (2012), Article ID 270750, 10 pages
Research Article

The Dependence of Electrical Resistivity-Saturation Relationships on Multiphase Flow Instability

Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29670, USA

Received 9 August 2012; Accepted 5 September 2012

Academic Editors: E. Liu and H. Perroud

Copyright © 2012 Zoulin Liu and Stephen M. J. Moysey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigate the relationship between apparent electrical resistivity and water saturation during unstable multiphase flow. We conducted experiments in a thin, two-dimensional tank packed with glass beads, where Nigrosine dyed water was injected uniformly along one edge to displace mineral oil. The resulting patterns of fluid saturation in the tank were captured on video using the light transmission method, while the apparent resistivity of the tank was continuously measured. Different experiments were performed by varying the water application rate and orientation of the tank to control the generalized Bond number, which describes the balance between viscous, capillary, and gravity forces that affect flow instability. We observed the resistivity index to gradually decrease as water saturation increases in the tank, but sharp drops occurred as individual fingers bridged the tank. The magnitude of this effect decreased as the displacement became increasingly unstable until a smooth transition occurred for highly unstable flows. By analyzing the dynamic data using Archie’s law, we found that the apparent saturation exponent increases linearly between approximately 1 and 2 as a function of generalized Bond number, after which it remained constant for unstable flows with a generalized Bond number less than −0.106.