Table of Contents
ISRN Artificial Intelligence
Volume 2012, Article ID 289721, 9 pages
http://dx.doi.org/10.5402/2012/289721
Research Article

Gait Recognition Based on Invariant Leg Classification Using a Neuro-Fuzzy Algorithm as the Fusion Method

Computer Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

Received 26 July 2011; Accepted 28 August 2011

Academic Editor: M. Arif

Copyright © 2012 Hadi Sadoghi Yazdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Kim, D. Kim, and J. Paik, “Gait recognition using active shape model and motion prediction,” IET Computer Vision, vol. 4, no. 1, pp. 25–36, 2010. View at Publisher · View at Google Scholar
  2. K. Bashir, T. Xiang, and S. Gong, “Gait recognition without subject cooperation,” Pattern Recognition Letters, vol. 31, no. 13, pp. 2052–2060, 2010. View at Publisher · View at Google Scholar
  3. J. B. Hayfron-Acquah, M. S. Nixon, and J. N. Carter, “Automatic gait recognition by symmetry analysis,” Pattern Recognition Letters, vol. 24, no. 13, pp. 2175–2183, 2003. View at Publisher · View at Google Scholar
  4. C. Chen, J. Liang, and X. Zhu, “Gait recognition based on improved dynamic Bayesian networks,” Pattern Recognition, vol. 44, no. 4, pp. 988–995, 2011. View at Publisher · View at Google Scholar
  5. Y. Kobayashi, T. Takashima, M. Hayashi, and H. Fujimoto, “Gait analysis of people walking on tactile ground surface indicators,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 1, pp. 53–59, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. B. Fildes, Injuries Among Older People: Falls at Home and Pedestrian Accidents, Dove Publications, Melbourne, Fla, USA, 1994.
  7. R. K. Begg, M. Palaniswami, and B. Owen, “Support vector machines for automated gait classification,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 5, pp. 828–838, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. Z. Ziheng, A. Prügel-Bennett, and R. I. Damper, “A bayesian framework for extracting human gait using strong prior knowledge,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1738–1752, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. Z. Xue, D. Ming, W. Song, B. Wan, and S. Jin, “Infrared gait recognition based on wavelet transform and support vector machine,” Pattern Recognition, vol. 43, no. 8, pp. 2904–2910, 2010. View at Publisher · View at Google Scholar
  10. P. Bours and R. Shrestha, “Eigensteps: a giant leap for gait recognition,” in Proceedings of the 2nd International Workshop on Security and Communication Networks (IWSCN '10), pp. 1–6, May 2010. View at Publisher · View at Google Scholar
  11. J. Zhang, J. Pu, C. Chen, and R. Fleischer, “Low-resolution gait recognition,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 40, no. 4, Article ID 5422638, pp. 986–996, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. K. Moustakas, D. Tzovaras, and G. Stavropoulos, “Gait recognition using geometric features and soft biometrics,” IEEE Signal Processing Letters, vol. 17, no. 4, Article ID 5395696, pp. 367–370, 2010. View at Publisher · View at Google Scholar
  13. C. Chen, J. Liang, H. Zhao, H. Hu, and J. Tian, “Factorial HMM and parallel HMM for gait recognition,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 39, no. 1, pp. 114–123, 2009. View at Publisher · View at Google Scholar
  14. M. W. Whittle, “Clinical gait analysis: a review,” Human Movement Science, vol. 15, no. 3, pp. 369–387, 1996. View at Publisher · View at Google Scholar
  15. G. Johansson, “Visual motion perception,” Scientific American, vol. 232, no. 6, pp. 76–88, 1975. View at Google Scholar
  16. J. E. Cutting and L. T. Kozlowski, “Recognition of friends by their walk,” Bulletin of the Psychonomic Society, vol. 9, pp. 353–356, 1977. View at Google Scholar
  17. S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, “The HumanID gait challenge problem: data sets, performance, and analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 162–177, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. J. W. Davis and S. R. Taylor, “Analysis and recognition of walking movements,” in Proceedings of the International Conference on Pattern Recognition, vol. 16, no. 1, pp. 315–318, Québec City, QC, Canada, August 2002.
  19. S. L. Dockstader and N. S. Imennov, “Prediction for human motion tracking failures,” IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 411–421, 2006. View at Publisher · View at Google Scholar
  20. X. Huang and N. V. Boulgouris, “Gait recognition for random walking patterns and variable body postures,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10), pp. 1726–1729, March 2010. View at Publisher · View at Google Scholar
  21. C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “P finder: real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997. View at Google Scholar
  22. R. V. Babu and K. R. Ramakrishnan, “Recognition of human actions using motion history extracted from the compressed video,” Image and Vision Computing, vol. 22, no. 8, pp. 597–607, 2004. View at Publisher · View at Google Scholar
  23. A. I. Nuno, B. Arcay, J. M. Cotos, and J. Varela, “Optimisation of fishing predictions by means of artificial neural networks, anfis, functional networks and remote sensing images,” Expert Systems with Applications, vol. 29, no. 2, pp. 356–363, 2005. View at Publisher · View at Google Scholar
  24. A. Noureldin, A. El-Shafie, and M. R. Taha, “Optimizing neuro-fuzzy modules for data fusion of vehicular navigation systems using temporal cross-validation,” Engineering Applications of Artificial Intelligence, vol. 20, no. 1, pp. 49–61, 2007. View at Publisher · View at Google Scholar
  25. N. Kishor, S. P. Singh, and A. S. Raghuvanshi, “Adaptive intelligent hydro turbine speed identification with water and random load disturbances,” Engineering Applications of Artificial Intelligence, vol. 20, no. 6, pp. 795–808, 2007. View at Publisher · View at Google Scholar
  26. K. C. Lee and P. Gardner, “Adaptive neuro-fuzzy inference system (ANFIS) digital predistorter for RF power amplifier linearization,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp. 43–51, 2006. View at Publisher · View at Google Scholar
  27. E. D. Übeyli and I. Güler, “Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles,” Neurocomputing, vol. 70, no. 1–3, pp. 296–304, 2006. View at Publisher · View at Google Scholar
  28. H. Qin and S. X. Yang, “Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images,” Fuzzy Sets and Systems, vol. 158, no. 10, pp. 1036–1063, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  29. P. Çivicioglu, “Using uncorrupted neighborhoods of the pixels for impulsive noise suppression with ANFIS,” IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 759–773, 2007. View at Publisher · View at Google Scholar
  30. G. Daoming and C. Jie, “ANFIS for high-pressure waterjet cleaning prediction,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1629–1634, 2006. View at Publisher · View at Google Scholar
  31. A. Depari, A. Flammini, D. Marioli, and A. Taroni, “Application of an ANFIS algorithm to sensor data processing,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 1, pp. 75–79, 2007. View at Publisher · View at Google Scholar
  32. K. Assaleh, “Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 1, article 10, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. M. L. Huang, H. Y. Chen, and J. J. Huang, “Glaucoma detection using adaptive neuro-fuzzy inference system,” Expert Systems with Applications, vol. 32, no. 2, pp. 458–468, 2007. View at Publisher · View at Google Scholar
  34. L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, John Wiley & Sons, Hoboken, NJ, USA, 2004.