Table of Contents
ISRN Communications and Networking
Volume 2012 (2012), Article ID 290534, 10 pages
http://dx.doi.org/10.5402/2012/290534
Research Article

Passive and Active Reconfigurable Scan-Beam Hollow Patch Reflectarray Antennas

1Faculty of Industrial Design, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
2Department for Electrical Engineering, DIMES, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
3Microwave and Radar Technologies, Department for Electrical Engineering, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Received 28 December 2011; Accepted 30 January 2012

Academic Editors: C. Beckman and W. C. van Etten

Copyright © 2012 M. Hajian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 9, pp. 932–939, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Hajian, A. Coccia, and L. P. Ligthart, “Design, analysis and measurements of reflected phased array antennas at Ka-band using passive stubs,” in Proceedings of the European Conference on Antennas and Propagation (EuCAP '06), Nice, France, 2006.
  3. J. Huang and R. J. Pogorzelski, “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 650–656, 1998. View at Google Scholar · View at Scopus
  4. D. M. Pozar, S. D. Targonski, and H. D. Syrigos, “Design of millimeter wave microstrip reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 2, pp. 287–296, 1997. View at Google Scholar · View at Scopus
  5. M. Hajian and N. F. Kiyani, “Design, analysis and measurements of reflectarray using variable length microstrip patch antennas at Ka-band,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC ’07), Athens, Greece, 2007.
  6. C. Trampuz, M. Hajian, and L. P. Ligthart, “Design, analysis and measurements of reflected phased array microstrip antennas at Ka-band, using hollow phasing,” in Proceedings of the 36th European Microwave Conference Proceedings (EURAD '06), pp. 57–60, Manchester, UK, 2006.
  7. K. Buisman, L. C. N. De Vreede, L. E. Larson et al., “Low-distortion, low-loss varactor-based adaptive matching networks, implemented in a silicon-on-glass technology,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC '05), pp. 389–392, June 2005. View at Scopus
  8. K. Buisman, L. C. N. De Vreede, L. E. Larson et al., ““Distortion-free” varactor diode topologies for RF adaptivity,” in Proceedings of the IEEE MTT-S International Microwave Symposium, pp. 157–160, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 3, pp. 384–390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 5, pp. 1388–1392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. won Jung, M. J. Lee, G. P. Li, and F. De Flaviis, “Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, pp. 455–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Riel and J. J. Laurin, “Design of an electronically beam scanning reflectarray using aperture-coupled elements,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1260–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hajian, Passive and Active Reconfigurable Microstrip Reflectarray Antennas, Delft University of Technology, 2007.
  14. Philips Components, “Surface mounted ceramic multilayer capacitors,” Product Specification, Class 1, NP0 50V microwave series.
  15. P. Blondy, C. Champeaux, P. Tristant et al., “Applications of RF MEMS to tunable filters and matching networks,” in Proceedings of the International Semiconductor Conference, pp. 111–116, October 2002. View at Scopus
  16. J. T. M. van Beek, M. H. W. M. van Delden, A. van Dijken et al., “High-Q integrated RF passives and micro-mechanical capacitors on silicon,” in Proceedings of the BIPOLAR/BICMOS Circuits and Technology Meeting, pp. 147–150, September 2003. View at Scopus
  17. J. van Beek and M. van Delden, “Realization of high tunability barium strontium titanate thin films by RF magnetron sputtering,” Applied Physics Letters, vol. 75, no. 20, pp. 3186–3188, 1999. View at Google Scholar · View at Scopus
  18. K. Buisman, L. C. N. de Vreede, L. E. Larson et al., “A monolithic low-distortion low-loss silicon-on-glass varactor-tuned filter with optimised biasing,” Microwave and Wireless Components Letters, vol. 17, no. 1, pp. 58–60, 2007. View at Google Scholar
  19. B. Kuijpers and M. Hajian, “Development of active microstrip reflectarray antennas using capacitive loading on a slotted patch,” Internal report IRCTR-A-006-06, Delft, The Netherlands, 2006. View at Google Scholar
  20. W. C. Till and J. T. Luxon, Integrated Circuits: Materials, Devices and Fabrication, Prentice Hall, 1982.