Table of Contents
ISRN Meteorology
Volume 2012 (2012), Article ID 296575, 10 pages
http://dx.doi.org/10.5402/2012/296575
Research Article

Analysis of Measured Drop Size Spectra over Land and Sea

1GEOMAR|Helmholtz-Zentrum für Ozeanforschung Kiel, Maritime Meteorologie, Düsternbrooker Weg 20, 24105 Kiel, Germany
2Deutscher Wetterdienst, Albin-Schwaiger-Weg 10, 82383 Hohenpeißenberg, Germany

Received 17 August 2011; Accepted 20 September 2011

Academic Editors: U. Kulshrestha, F. Tao, and D.-Y. Wang

Copyright © 2012 Karl Bumke and Jörg Seltmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Marshall and W. K. M. Palmer, “The distribution of rain drops with size,” Journal of Meteorology, vol. 5, pp. 165–166, 1948. View at Google Scholar
  2. C. W. Ulbrich and D. Atlas, “Microphysics of raindrop size spectra: tropical continental and maritime storms,” Journal of Applied Meteorology and Climatology, vol. 46, no. 11, pp. 1777–1791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Sekine, S. Ishii, S. I. Hwang, and S. Sayama, “Weibull raindrop-size distribution and its application to rain attenuation from 30 GHz to 1000 GHz,” International Journal of Infrared and Millimeter Waves, vol. 28, no. 5, pp. 383–392, 2007. View at Publisher · View at Google Scholar
  4. M. Großklaus, Niederschlagsmessung auf dem Ozean von fahrenden Schiffen, vol. 278, Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, Institut für Meereskunde, Kiel, Germany, 1996.
  5. R. Uijlenhoet, M. Steiner, and J. A. Smith, “Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation,” Journal of Hydrometeorology, vol. 4, no. 1, pp. 43–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Großklaus, K. Uhlig, and L. Hasse, “An optical disdrometer for use in high wind speeds,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 4, pp. 1051–1059, 1998. View at Google Scholar · View at Scopus
  7. D. Atlas, R. Srivastava, and R. Sekhon, “Doppler radar characteristics of precipitation at vertical incidence,” Reviews of Geophysics, vol. 11, no. 1, pp. 1–35, 1973. View at Publisher · View at Google Scholar
  8. M. Clemens, Machbarkeitsstudie zur räumlichen Niederschlagsanalyse aus Schiffsmessungen über der Ostsee, Ph.D. thesis, Christian-Albrechts-Universität, Kiel, Germany, 2002.
  9. A. Tokay, A. Kruger, and W. F. Krajewski, “Comparison of drop size distribution measurements by impact and optical disdrometers,” Journal of Applied Meteorology, vol. 40, no. 11, pp. 2083–2097, 2001. View at Google Scholar · View at Scopus
  10. B. E. Sheppard and P. I. Joe, “Comparison of raindrop size distribution measurements by a Joss- Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar,” Journal of Atmospheric and Oceanic Technology, vol. 11, no. 4, pp. 874–887, 1994. View at Google Scholar · View at Scopus
  11. J. Joss and A. Waldvogel, “Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung,” Pure and Applied Geophysics, vol. 68, no. 1, pp. 240–246, 1967. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Peters, B. Fischer, and T. Andersson, “Rain observations with a vertically looking Micro Rain Radar (MRR),” Boreal Environment Research, vol. 7, no. 4, pp. 353–362, 2002. View at Google Scholar · View at Scopus
  13. H. Sauvageot and J. P. Lacaux, “The shape of averaged drop size distributions,” Journal of the Atmospheric Sciences, vol. 52, no. 8, pp. 1070–1083, 1995. View at Google Scholar · View at Scopus
  14. L. Hasse, M. Großklaus, K. Uhlig, and P. Timm, “A ship rain gauge for use in high wind speeds,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 2, pp. 380–386, 1998. View at Google Scholar · View at Scopus
  15. B. Sveruk, “Correction of precipitation measurements—summary report,” in Correction of Precipitation Measurements, B. Sveruk, Ed., vol. 23, pp. 13–23, Züricher Geographische Schriften, 1986. View at Google Scholar
  16. A. Stohl, “Computation, accuracy and applications of trajectories—a review and bibliography,” Atmospheric Environment, vol. 32, no. 6, pp. 947–966, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Engström and L. Magnusson, “Estimating trajectory uncertainties due to flow dependent errors in the atmospheric analysis,” Atmospheric Chemistry and Physics, vol. 9, no. 22, pp. 8857–8867, 2009. View at Google Scholar · View at Scopus
  18. J. Testud, S. Oury, R. A. Black, P. Amayenc, and X. Dou, “The concept of "normalized" distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing,” Journal of Applied Meteorology, vol. 40, no. 6, pp. 1118–1140, 2001. View at Google Scholar · View at Scopus
  19. I. G. Doelling, J. Joss, and J. Riedl, “Systematic variations of Z-R-relationships from drop size distributions measured in northern Germany during seven years,” Atmospheric Research, vol. 47-48, pp. 635–649, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Mallet and L. Barthes, “Estimation of gamma raindrop size distribution parameters: statistical fluctuations and estimation errors,” Journal of Atmospheric and Oceanic Technology, vol. 26, no. 8, pp. 1572–1584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Srivastava, “Size distribution of raindrops generated by their breakup and coalescence,” Journal of the Atmospheric Sciences, vol. 28, no. 3, pp. 410–415, 1971. View at Google Scholar · View at Scopus
  22. R. Harikumar, S. Sampath, and V. S. Kumar, “Variation of rain drop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India,” Advances in Space Research, vol. 45, no. 4, pp. 576–586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. K. McCool, J. D. Williams, and J. R. Morse, “Raindrop characteristics in the Pacific Northwest,” Tech. Rep. 097441, 2009, ASABE Paper. View at Google Scholar
  24. D. Atlas, C. W. Ulbrich, F. D. Marks Jr. et al., “Partitioning tropical oceanic convective and stratiform rains by draft strength,” Journal of Geophysical Research D, vol. 105, no. 2, pp. 2259–2267, 2000. View at Google Scholar · View at Scopus
  25. K. Bumke, M. Clemens, H. Graßl et al., “More accurate areal precipitation over land and sea: APOLAS Abschlussbericht,” Tech. Rep. MPI-M-2006-0012, Max-Planck-Institut f. Meteorologie, Hamburg, Germany, 2006, Reports on Earth System Science 22. View at Google Scholar
  26. D. Atlas, C. W. Ulbrich, and F. D. Marks Jr., “Reply,” Journal of Geophysical Research, vol. 107, no. 1, p. 4006, 2002. View at Publisher · View at Google Scholar
  27. S. E. Yuter and R. A. Houze Jr., “Comment on ‘Partitioning tropical oceanic convective and stratiform rains by draft strength’ by David Atlas et al,” Journal of Geophysical Research, vol. 107, no. 1, 2002. View at Publisher · View at Google Scholar
  28. K. Bumke, B. Fischer, G. Peters et al., “APOLAS: more accurate areal precipitation over land and sea,” BALTEX Newsletter, vol. 8, pp. 8–10, 2005. View at Google Scholar
  29. C. R. Williams, A. Kruger, K. S. Gage et al., “Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler,” Geophysical Research Letters, vol. 27, no. 12, pp. 1763–1766, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Heinle, A. Macke, and A. Srivastav, “Automatic cloud classification of whole sky images,” Atmospheric Measurement Techniques, vol. 3, pp. 557–567, 2010. View at Google Scholar