Table of Contents
ISRN Ceramics
Volume 2012 (2012), Article ID 305496, 5 pages
http://dx.doi.org/10.5402/2012/305496
Research Article

Preparation and Catalytic Properties of Iron-Cerium Phosphates with Sodium Dodecyl Sulfate

Department of Informatics and Environmental Sciences, Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan

Received 28 August 2012; Accepted 12 September 2012

Academic Editors: S. Gutzov and P. Thavorniti

Copyright © 2012 Hiroaki Onoda and Takeshi Sakumura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Onoda, H. Nariai, A. Moriwaki, H. Maki, and I. Motooka, “Formation and catalytic characterization of various rare earth phosphates,” Journal of Materials Chemistry, vol. 12, no. 6, pp. 1754–1760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Onoda, T. Ohta, J. Tamaki, and K. Kojima, “Decomposition of trifluoromethane over nickel pyrophosphate catalysts containing metal cation,” Applied Catalysis A, vol. 288, no. 1-2, pp. 98–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Onoda, K. Yokouchi, and K. Kojima H, “Addition of rare earth cation on formation and properties of various cobalt phosphates,” Materials Science and Engineering: B, vol. 116, no. 2, pp. 189–195, 2005. View at Publisher · View at Google Scholar
  4. W. J. Tang, “Physico-Chemical Properties and Oxygen Species Behavior of Bulk and Modified Vanadium Phosphate Catalyst for Partial Oxidation of N-Butane,” [Ph.D. thesis], University Putra, Malaysia, 2008. View at Google Scholar
  5. C. Li, H. Kawada, X. Sun, H. Xu, Y. Yoneyama, and N. Tsubaki, “highly efficient alcohol oxidation on nanoporous VSB-5 nickel phosphate catalyst functionalized by naoh treatment,” ChemCatChem, vol. 3, no. 4, pp. 684–689, 2011. View at Publisher · View at Google Scholar
  6. X. Wang, Y. Wang, Q. Tang, Q. Guo, Q. Zhang, and H. Wan, “MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide,” Journal of Catalysis, vol. 217, no. 2, pp. 457–467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaarad, “Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts,” Catalysis Communications, vol. 6, no. 8, pp. 542–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Li, G. A. Tompsett, and G. W. Huber, “Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts,” ChemSusChem, vol. 3, no. 10, pp. 1154–1157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D. R. Gamelin, “Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation,” Energy and Environmental Science, vol. 4, no. 5, pp. 1759–1764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Guan, K. Kusakabe, and S. Yamasaki, “Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil,” Fuel Processing Technology, vol. 90, no. 4, pp. 520–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Onoda, K. Asai, and A. Takenaka, “Preparation of nickel phosphates with various acidic and basic compounds,” Journal of Ceramic Processing Research, vol. 12, no. 4, pp. 439–442, 2011. View at Google Scholar
  12. H. Onoda, K. Taniguchi, and I. Tanaka, “Preparation and acidic properties of nano-porous lanthanum phosphate by the addition of urea,” Microporous and Mesoporous Materials, vol. 109, no. 1-3, pp. 193–198, 2008. View at Publisher · View at Google Scholar
  13. H. Onoda and T. Sakumura, “Synthesis and pigmental properties of nickel phosphates by the substitution with tetravalent cerium cation,” Materials Sciences and Applications, vol. 2, no. 11, pp. 1578–1583, 2011. View at Publisher · View at Google Scholar
  14. H. Onoda, H. Matsui, and I. Tanaka, “Improvement of acid and base resistance of nickel phosphate pigment by the addition of lanthanum cation,” Materials Science and Engineering: B, vol. 141, no. 1-2, pp. 28–33, 2007. View at Publisher · View at Google Scholar
  15. H. Onoda, K. Tange, and I. Tanaka, “Influence of lanthanum addition on preparation and powder properties of cobalt phosphates,” Journal of Materials Science, vol. 43, no. 16, pp. 5483–5488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Onoda and T. Sakumura, “Preparation and acidic properties of iron phosphates with sodium dodecyl-sulfate,” Phosphorus Research Bulletin, vol. 27, pp. 28–32, 2012. View at Publisher · View at Google Scholar