Table of Contents
ISRN Toxicology
Volume 2012 (2012), Article ID 309853, 7 pages
http://dx.doi.org/10.5402/2012/309853
Research Article

Assessment of Polycyclic Aromatic Hydrocarbon Contamination of Breeding Pools Utilized by the Puerto Rican Crested Toad, Peltophryne lemur

1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
2Environmental Medicine Consortium, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
3Department of Biology, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695-7617, USA
4North Carolina Zoological Park, 4401 Zoo Parkway, Asheboro, NC 27205, USA

Received 26 September 2012; Accepted 11 November 2012

Academic Editors: A. Botta and M. Pacheco

Copyright © 2012 Jenessa Gjeltema et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Angulo, “Peltophryne lemur,” in IUCN, IUCN Redlist of Threatened Species. Version 2012.1, 2012, http://www.iucnredlist.org/.
  2. J. Matos-Torres, Habitat characterization for the Puerto Rican crested toad (Peltophryne [Bufo] lemur) at Guanica state forest, Puerto Rico [M.S. thesis], University of Puerto Rico, Puerto Rico, USA, 2006.
  3. United States Fish and Wildlife Service, “Determination of threatened status for the Puerto Rican crested toad. Department of the Interior,” Federal Register, vol. 52, Doc 87-28828, no. 149, 1987. View at Google Scholar
  4. D. Barber, “Cooperative Amphibian Programs in AZA: Puerto Rican Crested Toad SSP,” Connect, p. 13, 2007.
  5. K. B. Beauclerc, B. Johnson, and B. N. White, “Genetic rescue of an inbred captive population of the critically endangered Puerto Rican crested toad (Peltophryne lemur) by mixing lineages,” Conservation Genetics, vol. 11, no. 1, pp. 21–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Johnson, “Recovery of the Puerto Rican crested toad,” Endangered Species Bulletin, vol. 24, no. 3, pp. 8–9, 1999. View at Google Scholar
  7. T. J. Miller, “Husbandry and breeding of the Puerto Rican crested toad (Peltophryne lemur) with comments on its natural history,” Zoo Biology, vol. 4, no. 3, pp. 281–286, 1985. View at Google Scholar
  8. PRCT SSP, The Puerto Rican Crested Toad Species Survival Plan Website, 2006, http://www.crestedtoadssp.org/.
  9. CBSG, “Population and habitat viability assessment for the Puerto Rican crested toad final report,” Tech. Rep., IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minn, USA, 2005. View at Google Scholar
  10. J. N. Brown and B. M. Peake, “Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff,” Science of the Total Environment, vol. 359, no. 1–3, pp. 145–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Bryer, J. N. Elliott, and E. J. Willingham, “The effects of coal tar based pavement sealer on amphibian development and metamorphosis,” Ecotoxicology, vol. 15, no. 3, pp. 241–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Herrera Environmental Consultants, White Paper: Untreated Highway Runoff in Western Washington, Washington State Department of Transportation, Seattle, Wash, USA, 2007.
  13. E. J. Hoffman, G. L. Mills, J. S. Latimer, and J. G. Quinn, “Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters,” Environmental Science and Technology, vol. 18, no. 8, pp. 580–587, 1984. View at Google Scholar · View at Scopus
  14. B. Ngabe, T. F. Bidleman, and G. I. Scott, “Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina,” The Science of the Total Environment, vol. 255, no. 1–3, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Boffetta, N. Jourenkova, and P. Gustavsson, “Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons,” Cancer Causes and Control, vol. 8, no. 3, pp. 444–472, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Burchiel and M. I. Luster, “Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes,” Clinical Immunology, vol. 98, no. 1, pp. 2–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. ENSR International, “Development of a standardized approach for assessing potential risks to amphibians exposed to sediment and hydric soils,” Tech. Rep. TR-2245-ENV, Naval Facilities Engineering Command, Port Hueneme, Calif, USA, 2004. View at Google Scholar
  18. P. H. Langlois, A. T. Hoyt, P. J. Lupo et al., “Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of neural tube defect-affected pregnancies,” Birth Defects Research A, vol. 94, no. 9, pp. 693–700, 2012. View at Google Scholar
  19. J. E. Djomo, V. Ferrier, L. Gauthier, C. Zoll-Moreux, and J. Marty, “Amphibian micronucleus test in vivo: evaluation of the genotoxicity of some major polycyclic aromatic hydrocarbons found in a crude oil,” Mutagenesis, vol. 10, no. 3, pp. 223–226, 1995. View at Google Scholar · View at Scopus
  20. M. Fernandez, L. Gauthier, and A. Jaylet, “Use of newt larvae for in vivo genotoxicity testing of water: results on 19 compounds evaluated by the micronucleus test,” Mutagenesis, vol. 4, no. 1, pp. 17–26, 1989. View at Google Scholar · View at Scopus
  21. M. Fernandez, J. L'Haridon, L. Gauthier, and C. Zoll-Moreux, “Amphibian micronucleus test(s): a simple and reliable method for evaluating in vivo genotoxic effects of freshwater pollutants and radiations. Initial assessment,” Mutation Research, vol. 292, no. 1, pp. 83–99, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. Hatch and G. A. Burton, “Effects of photoinduced toxicity of fluoranthene on amphibian embryos and larvae,” Environmental Toxicology and Chemistry, vol. 17, no. 9, pp. 1777–1785, 1998. View at Google Scholar · View at Scopus
  23. O. Marquis, A. Millery, S. Guittonneau, and C. Miaud, “Toxicity of PAHs and jelly protection of eggs in the Common frog Rana temporaria,” Amphibia Reptilia, vol. 27, no. 3, pp. 472–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. D. Monson, D. J. Call, D. A. Cox, K. Liber, K. G. T, and Ankley, “Photoinduced toxicity of fluoranthene to Northern leopard frogs (Rana pipiens),” Environmental Toxicology and Chemistry, vol. 18, no. 2, pp. 308–312, 1999. View at Google Scholar
  25. S. E. Walker, D. H. Taylor, and J. T. Oris, “Behavioral and histopathological effects of fluoranthene on bullfrog larvae (Rana catesbeiana),” Environmental Toxicology and Chemistry, vol. 17, no. 4, pp. 734–739, 1998. View at Google Scholar
  26. A. R. Blaustein, J. M. Romansic, J. M. Kiesecker, and A. C. Hatch, “Ultraviolet radiation, toxic chemicals and amphibian population declines,” Diversity and Distributions, vol. 9, no. 2, pp. 123–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Sparling and Donald, “A review of the role of contaminants in amphibian declines,” in Handbook of Ecotoxicology, D. J. Hoffman, B. A. Rattner, and G. A. Burton, Eds., pp. 1099–1128, Lewis Publisheers, Boca Raton, Fla, USA, 2003. View at Google Scholar
  28. Ministry of Environment of British Columbia, Environmental Protection Division, Water Quality: Ambient Water Quality Criteria for Polycyclic Aromatic Hydrocarbons (PAHs), 1993, http://www.env.gov.bc.ca/wat/wq/BCguidelines/pahs/pahs_over.html.
  29. G. W. Suter II and C. L. Tsao, “Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision,” Tech. Rep. ES/ER/TM-96/R2, U.S. Department of Energy,, Oak Ridge, Tenn, USA, 1996. View at Google Scholar
  30. Canadian Council of Ministers of the Environment, “Canadian water quality guidelines for the protection of aquatic life: summary table,” in Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Canada, 2007. View at Google Scholar
  31. United States Environmental Protection Agency, “Office of water and office of science and technology,” National Recommended Water Quality Criteria Report 4304T, 2009. View at Google Scholar
  32. J. N. Huckins, J. D. Petty, and K. Booij, Monitors of Organic Chemicals in the Environment: Semipermeable Membrane Devices, Springer, New York, NY, USA, 2006.
  33. A. Opperhuizen, V. D. E. W. Velde, and F. A. P. C. Gobas, “Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals,” Chemosphere, vol. 14, no. 11-12, pp. 1871–1896, 1985. View at Google Scholar · View at Scopus
  34. K. Booij, H. M. Sleiderink, and F. Smedes, “Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards,” Environmental Toxicology and Chemistry, vol. 17, no. 7, pp. 1236–1245, 1998. View at Google Scholar
  35. J. N. Huckins, J. D. Petty, J. A. Lebo, C. E. Orazio, R. C. Clark, and V. L. Gibson, SPMD Technology Tutorial, USGS, 3rd edition, 2002, http://wwwaux.cerc.cr.usgs.gov/SPMD/SPMD-tech_tutorial.htm.
  36. Y. Lu, Z. Wang, and J. Huckins, “Review of the background and application of triolein-containing semipermeable membrane devices in aquatic environmental study,” Aquatic Toxicology, vol. 60, no. 1-2, pp. 139–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. D. R. Luellen and D. Shea, “Calibration and field verification of semipermeable membrane devices for measuring polycyclic aromatic hydrocarbons in water,” Environmental Science and Technology, vol. 36, no. 8, pp. 1791–1797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. Garmin International, GPSMAP 60CSx with Sensors and Maps Owner’s Manual, 2006.
  39. D. Shea, “Environmental risk assessment,” in A Textbook of Modern Toxicology, E. Hodgson, Ed., pp. 501–517, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2004. View at Google Scholar