Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 318194, 14 pages
http://dx.doi.org/10.5402/2012/318194
Review Article

Organ-Based Response to Exercise in Type 1 Diabetes

Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA

Received 23 October 2012; Accepted 14 November 2012

Academic Editors: J.-M. Ricort, N. Tentolouris, K. Yamagami, and K. Zajickova

Copyright © 2012 Lisa Stehno-Bittel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Mathis, L. Vence, and C. Benoist, “β-cell death during progression to diabetes,” Nature, vol. 414, no. 6865, pp. 792–798, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Gordon-Dseagu, N. Shelton, and J. Mindell, “Epidemiological evidence of a relationship between type-1 diabetes mellitus and cancer: a review of the existing literature,” International Journal of Cancer, vol. 132, no. 3, pp. 501–508, 2012. View at Google Scholar
  3. N. M. Chapman, K. Coppieters, M. Von Herrath, and S. Tracy, “The microbiology of human hygiene and its impact on type 1 diabetes,” Islets, vol. 4, no. 4, pp. 253–261, 2012. View at Google Scholar
  4. M. Trucco, “Gene-environment interaction in type 1 diabetes mellitus,” Endocrinologia y Nutricion, vol. 56, supplement 4, pp. 56–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Peng and W. Hagopian, “Environmental factors in the development of Type 1 diabetes,” Reviews in Endocrine and Metabolic Disorders, vol. 7, no. 3, pp. 149–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Krantz, W. J. Mack, H. N. Hodis, C. R. Liu, C. H. Liu, and F. R. Kaufman, “Early onset of subclinical atherosclerosis in young persons with type 1 diabetes,” Journal of Pediatrics, vol. 145, no. 4, pp. 452–457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. D. Vidoni, R. A. Honea, S. A. Billinger, R. H. Swerdlow, and J. M. Burns, “Cardiorespiratory fitness is associated with atrophy in Alzheimer's and aging over 2 years,” Neurobiology of Aging, vol. 33, no. 8, pp. 1624–1632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Rachmiel, J. Buccino, and D. Daneman, “Exercise and type 1 diabetes mellitus in youth; review and recommendations,” Pediatric Endocrinology Reviews, vol. 5, no. 2, pp. 656–665, 2007. View at Google Scholar · View at Scopus
  9. R. Aouadi, R. Khalifa, A. Aouidet et al., “Aerobic training programs and glycemic control in diabetic children in relation to exercise frequency,” Journal of Sports Medicine and Physical Fitness, vol. 51, no. 3, pp. 393–400, 2011. View at Google Scholar
  10. M. Chimen, A. Kennedy, K. Nirantharakumar, T. T. Pang, R. Andrews, and P. Narendran, “What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review,” Diabetologia, vol. 55, no. 3, pp. 542–551, 2012. View at Publisher · View at Google Scholar
  11. H. Yki-Jarvinen, R. A. DeFronzo, and V. A. Koivisto, “Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy,” Diabetes Care, vol. 7, no. 6, pp. 520–527, 1984. View at Google Scholar · View at Scopus
  12. A. C. Ramalho, M. de Lourdes Lima, F. Nunes et al., “The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 72, no. 3, pp. 271–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Herbst, R. Bachran, T. Kapellen, and R. W. Holl, “Effects of regular physical activity on control of glycemia in pediatric patients with type 1 diabetes mellitus,” Archives of Pediatrics and Adolescent Medicine, vol. 160, no. 6, pp. 573–577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Rattigan, M. G. Wallis, J. M. Youd, and M. G. Clark, “Exercise training improves insulin-mediated capillary recruitment in association with glucose uptake in rat hindlimb,” Diabetes, vol. 50, no. 12, pp. 2659–2665, 2001. View at Google Scholar · View at Scopus
  15. E. A. Gulve, “Exercise and glycemic control in diabetes: benefits, challenges, and adjustments to pharmacotherapy,” Physical Therapy, vol. 88, no. 11, pp. 1297–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. C. Howarth, F. M. A. Marzouqi, A. M. S. Al Saeedi, R. S. Hameed, and E. Adeghate, “The effect of a heavy exercise program on the distribution of pancreatic hormones in the streptozotocin-induced diabetic rat,” Journal of the Pancreas, vol. 10, no. 5, pp. 485–491, 2009. View at Google Scholar · View at Scopus
  17. H.-H. Huang, K. Farmer, J. Windscheffel et al., “Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice,” Experimental Diabetes Research, vol. 2011, Article ID 481427, 2011. View at Publisher · View at Google Scholar
  18. O. Coskun, A. Ocakci, T. Bayraktaroglu, and M. Kanter, “Exercise training prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas,” Tohoku Journal of Experimental Medicine, vol. 203, no. 3, pp. 145–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. S. Krause and P. I. Homem De Bittencourt, “Type 1 diabetes: can exercise impair the autoimmune event? The L-arginine/glutamine coupling hypothesis,” Cell Biochemistry and Function, vol. 26, no. 4, pp. 406–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ellingsgaard, I. Hauselmann, B. Schuler et al., “Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells,” Nature Medicine, vol. 17, no. 11, pp. 1481–1489, 2011. View at Publisher · View at Google Scholar
  21. S. A. G. Kemink, A. R. M. M. Hermus, L. M. J. W. Swinkels, J. A. Lutterman, and A. G. H. Smals, “Osteopenia in insulin-dependent diabetes mellitus: prevalence and aspects of pathophysiology,” Journal of Endocrinological Investigation, vol. 23, no. 5, pp. 295–303, 2000. View at Google Scholar · View at Scopus
  22. B. Lettgen, B. Hauffa, C. Mohlmann, C. Jeken, and C. Reiners, “Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography,” Hormone Research, vol. 43, no. 5, pp. 173–175, 1995. View at Google Scholar · View at Scopus
  23. A. B. R. Maggio, S. Ferrari, M. Kraenzlin et al., “Decreased bone turnover in children and adolescents with well controlled type 1 diabetes,” Journal of Pediatric Endocrinology and Metabolism, vol. 23, no. 7, pp. 697–707, 2010. View at Google Scholar · View at Scopus
  24. J. Simmons, M. Raines, K. Ness et al., “Metabolic control and bone health in adolescents with type 1 diabetes,” International Journal of Pediatric Endocrinology, vol. 11, p. 13, 2011. View at Google Scholar
  25. M. A. AboElAsrar, N. S. Elbarbary, D. E. Elshennawy, and A. M. Omar, “Insulin-like growth factor-1 cytokines cross-talk in type 1 diabetes mellitus: relationship to microvascular complications and bone mineral density,” Cytokine, vol. 59, no. 1, pp. 86–93, 2012. View at Publisher · View at Google Scholar
  26. R. E. Maser, P. Kolm, C. M. Modlesky, T. J. Beck, and M. J. Lenhard, “Hip strength in adults with type 1 diabetes is associated with age at onset of diabetes,” Journal of Clinical Densitometry, vol. 15, no. 1, pp. 78–85, 2012. View at Publisher · View at Google Scholar
  27. C. Hamann, S. Kirschner, K.-P. Günther, and L. C. Hofbauer, “Bone, sweet bone—osteoporotic fractures in diabetes mellitus,” Nature Reviews Endocrinology, vol. 8, no. 5, pp. 297–305, 2012. View at Publisher · View at Google Scholar
  28. L. R. McCabe, J. Zhang, and S. Raehtz, “Understanding the skeletal pathology of type 1 and 2 diabetes mellitus,” Critical Reviews in Eukaryotic Gene Expression, vol. 21, no. 2, pp. 187–206, 2011. View at Google Scholar
  29. K. K. Nicodemus and A. R. Folsom, “Iowa Women’s Health Study 2001: type 1 and type 2 diabetes and incident hip fractures in postmenopausal women,” Diabetes Care, vol. 24, no. 7, pp. 1192–1197, 2001. View at Google Scholar · View at Scopus
  30. L. Coe, J. Zhang, and L. McCabe, “Both spontaneous Ins2(+/−) and streptozotocin-induced type I diabetes cause bone loss in young mice,” Journal of Cellular Physiology. In press. View at Publisher · View at Google Scholar
  31. G. K. Reddy, L. Stehno-Bittel, S. Hamade, and C. S. Enwemeka, “The biomechanical integrity of bone in experimental diabetes,” Diabetes Research and Clinical Practice, vol. 54, no. 1, pp. 1–8, 2001. View at Google Scholar · View at Scopus
  32. A. B. R. Maggio, R. R. Rizzoli, L. M. Marchand, S. Ferrari, M. Beghetti, and N. J. Farpour-Lambert, “Physical activity increases bone mineral density in children with type 1 diabetes,” Medicine and Science in Sports and Exercise, vol. 44, no. 7, pp. 1206–1211, 2012. View at Publisher · View at Google Scholar
  33. P. Gunczler, R. Lanes, V. Paz-Martinez et al., “Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally,” Journal of Pediatric Endocrinology and Metabolism, vol. 11, no. 3, pp. 413–419, 1998. View at Google Scholar · View at Scopus
  34. A. Catalano, N. Morabito, G. Di Vieste et al., “Phalangeal quantitative ultrasound and metabolic control in premenopausal women with type 1 diabetes mellitus,” Journal of Endocrinological Investigation. In press.
  35. N. Erdal, S. Gürgül, C. Demirel, and A. Yildiz, “The effect of insulin therapy on biomechanical deterioration of bone in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats,” Diabetes Research and Clinical Practice, vol. 97, no. 3, pp. 461–467, 2012. View at Publisher · View at Google Scholar
  36. D. L. Chau, S. V. Edelman, and M. Chandran, “Osteoporosis and diabetes,” Current Diabetes Reports, vol. 3, no. 1, pp. 37–42, 2003. View at Google Scholar · View at Scopus
  37. A. Räkel, O. Sheehy, E. Rahme, and J. LeLorier, “Osteoporosis among patients with type 1 and type 2 diabetes,” Diabetes and Metabolism, vol. 34, no. 3, pp. 193–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. Hofbauer, C. C. Brueck, S. K. Singh, and H. Dobnig, “Osteoporosis in patients with diabetes mellitus,” Journal of Bone and Mineral Research, vol. 22, no. 9, pp. 1317–1328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. J. Nadeau and J. E. B. Reusch, “Cardiovascular function/dysfunction in adolescents with type 1 diabetes,” Current Diabetes Reports, vol. 11, no. 3, pp. 185–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Laing, A. Swerdlow, S. Slater et al., “Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes,” Diabetologia, vol. 46, pp. 760–765, 2003. View at Google Scholar
  41. A. J. Swerdlow and M. E. Jones, “Mortality during 25 years of follow-up of a cohort with diabetes,” International Journal of Epidemiology, vol. 25, no. 6, pp. 1250–1261, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. R. P. Wadwa, G. L. Kinney, D. M. Maahs et al., “Awareness and treatment of dyslipidemia in young adults with type 1 diabetes,” Diabetes Care, vol. 28, no. 5, pp. 1051–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Devaraj, A. T. Cheung, I. Jialal et al., “Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications,” Diabetes, vol. 56, no. 11, pp. 2790–2796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Giugliano, R. Acampora, and F. D'Onofrio, “Medical hypothesis: cardiovascular complications of diabetes mellitus-from glucose to insulin and back,” Diabete et Metabolisme, vol. 20, no. 5, pp. 445–453, 1994. View at Google Scholar · View at Scopus
  45. G. Doronzo, M. Viretto, I. Russo, L. Mattiello, G. Anfossi, and M. Trovati, “Effects of high glucose on vascular endothelial growth factor synthesis and secretion in aortic vascular smooth muscle cells from obese and lean zucker rats,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 9478–9488, 2012. View at Publisher · View at Google Scholar
  46. M. Sturek, “Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes,” Journal of Applied Physiology, vol. 111, no. 2, pp. 573–586, 2011. View at Publisher · View at Google Scholar
  47. Y. M. Searls, R. Loganathan, I. V. Smirnova, and L. Stehno-Bittel, “Intracellular Ca2+ regulating proteins in vascular smooth muscle cells are altered with type 1 diabetes due to the direct effects of hyperglycemia,” Cardiovascular Diabetology, vol. 9, article 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Nathan, P. Cleary, J. Backlund et al., “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” New England Journal of Medicine, vol. 348, pp. 2294–2303, 2005. View at Google Scholar
  49. C. Lamotte, C. Iliescu, C. Libersa, and F. Gottrand, “Increased intima-media thickness of the carotid artery in childhood: a systematic review of observational studies,” European Journal of Pediatrics, vol. 170, no. 6, pp. 719–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Gómez-Díaz, E. Ramírez-Soriano, J. Hajj et al., “Association between carotid intima-media thickness, buccodental status, and glycemic control in pediatric type 1 diabetes,” Pediatric Diabetes, vol. 13, no. 7, pp. 552–558, 2012. View at Google Scholar
  51. Y. Searls, I. V. Smirnova, L. Vanhoose, B. Fegley, R. Loganathan, and L. Stehno-Bittel, “Time-dependent alterations in rat macrovessels with type 1 diabetes,” Experimental Diabetes Research, vol. 2012, Article ID 278620, 2012. View at Publisher · View at Google Scholar
  52. C. A. Witczak, B. R. Wamhoff, and M. Sturek, “Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic yucatan swine,” Journal of Applied Physiology, vol. 101, no. 3, pp. 752–762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. T. S. Church, Y. J. Cheng, C. P. Earnest et al., “Exercise capacity and body composition as predictors of mortality among men with diabetes,” Diabetes Care, vol. 27, no. 1, pp. 83–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Giannini, A. Mohn, and F. Chiarelli, “Physical exercise and diabetes during childhood,” Acta Biomedica de l'Ateneo Parmense, vol. 77, no. 1, pp. 18–25, 2006. View at Google Scholar · View at Scopus
  55. T. L. Perry, J. I. Mann, N. J. Lewis-Barned, A. W. Duncan, M. A. Waldron, and C. Thompson, “Lifestyle intervention in people with insulin-dependent diabetes mellitus (IDDM),” European Journal of Clinical Nutrition, vol. 51, no. 11, pp. 757–763, 1997. View at Google Scholar · View at Scopus
  56. D. Lucini, G. Zuccotti, A. Scaramuzza, M. Malacarne, F. Gervasi, and M. Pagani, “Exercise might improve cardiovascular autonomic regulation in adolescents with type 1 diabetes,” Acta Diabetologica. In press. View at Publisher · View at Google Scholar
  57. J. P. H. Seeger, D. H. J. Thijssen, K. Noordam, M. E. C. Cranen, M. T. E. Hopman, and M. W. G. Nijhuis-Van Der Sanden, “Exercise training improves physical fitness and vascular function in children with type 1 diabetes,” Diabetes, Obesity and Metabolism, vol. 13, no. 4, pp. 382–384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. D. M. Arrick, H. Sun, and W. G. Mayhan, “Influence of exercise training on ischemic brain injury in type 1 diabetic rats,” Journal of Applied Physiology, vol. 113, no. 7, pp. 1121–1127, 2012. View at Publisher · View at Google Scholar
  59. W. G. Mayhan, D. M. Arrick, K. P. Patel, and H. Sun, “Exercise training normalizes impaired NOS-dependent responses of cerebral arterioles in type 1 diabetic rats,” American Journal of Physiology, vol. 300, no. 3, pp. H1013–H1020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. F. S. Korte, E. A. Mokelke, M. Sturek, and K. S. McDonald, “Exercise improves impaired ventricular function and alterations of cardiac myofibrillar proteins in diabetic dyslipidemic pigs,” Journal of Applied Physiology, vol. 98, no. 2, pp. 461–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. J. Trask, M. A. Delbin, P. S. Katz, A. Zanesco, and P. A. Lucchesi, “Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: impact of exercise training,” Vascular Pharmacology, vol. 57, no. 5-6, pp. 187–193, 2012. View at Publisher · View at Google Scholar
  62. M. A. Salem, M. A. Aboelasrar, N. S. Elbarbary, R. A. Elhilaly, and Y. M. Refaat, “Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial,” Diabetology and Metabolic Syndrome, vol. 2, no. 1, article 47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. F. Michaliszyn and M. S. Faulkner, “Physical activity and sedentary behavior in adolescents with type 1 diabetes,” Research in Nursing & Health, vol. 33, no. 5, pp. 441–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Heidarianpour, “Does detraining restore influence of exercise training on microvascular responses in streptozotocin-induced diabetic rats?” Microvascular Research, vol. 80, no. 3, pp. 422–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. F. K. Bishop, D. M. Maahs, J. K. Snell-Bergeon, L. G. Ogden, G. L. Kinney, and M. Rewers, “Lifestyle risk factors for atherosclerosis in adults with type I diabetes,” Diabetes and Vascular Disease Research, vol. 6, no. 4, pp. 269–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. S. H. Bell, “Diabetic cardiomyopathy: a unique entity or a complication of coronary artery disease?” Diabetes Care, vol. 18, no. 5, pp. 708–714, 1995. View at Google Scholar · View at Scopus
  67. S. Trost and M. LeWinter, “Diabetic cardiomyopathy,” Current Treatment Options in Cardiovascular Medicine, vol. 3, pp. 481–492, 2001. View at Google Scholar
  68. N. S. Dhalla, G. N. Pierce, I. R. Innes, and R. E. Beamish, “Pathogenesis of cardiac dysfunction in diabetes mellitus,” Canadian Journal of Cardiology, vol. 1, no. 4, pp. 263–281, 1985. View at Google Scholar · View at Scopus
  69. R. Loganathan, M. Bilgen, B. Al-Hafez, M. D. Alenezy, and I. V. Smirnova, “Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging,” Cardiovascular Diabetology, vol. 5, article 7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. A. I. M. Al-Shafei, R. G. Wise, G. A. Gresham, T. A. Carpenter, L. D. Hall, and C. L. H. Huang, “Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition,” Journal of Physiology, vol. 538, no. 2, pp. 555–572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. K. J. Nadeau, J. G. Regensteiner, T. A. Bauer et al., “Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 513–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. K. Piya, G. N. Shivu, A. Tahrani et al., “Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus,” Metabolism, vol. 60, no. 8, pp. 1115–1121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Gusso, P. Hofman, S. Lalande, W. Cutfield, E. Robinson, and J. C. Baldi, “Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus,” Diabetologia, vol. 51, no. 7, pp. 1317–1320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Krishnan, D. A. Fields, K. C. Copeland, P. R. Blackett, M. P. Anderson, and A. W. Gardner, “Sex differences in cardiovascular disease risk in adolescents with type 1 diabetes,” Gender Medicine, vol. 9, no. 4, pp. 251–258, 2012. View at Publisher · View at Google Scholar
  75. P. Herrero, L. R. Peterson, J. B. McGill et al., “Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus,” Journal of the American College of Cardiology, vol. 47, no. 3, pp. 598–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. G. N. Shivu, T. T. Phan, K. Abozguia et al., “Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus,” Circulation, vol. 121, no. 10, pp. 1209–1215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Loganathan, M. Bilgen, B. Al-Hafez, S. V. Zhero, M. D. Alenezy, and I. V. Smirnova, “Exercise training improves cardiac performance in diabetes: in vivo demonstration with quantitative cine-MRI analyses,” Journal of Applied Physiology, vol. 102, no. 2, pp. 665–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. T. L. Broderick, P. Poirier, and M. Gillis, “Exercise training restores abnormal myocardial glucose utilization and cardiac function in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 21, no. 1, pp. 44–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. I. V. Smirnova, N. Kibiryeva, E. Vidoni, R. Bunag, and L. Stehno-Bittel, “Abnormal EKG stress test in rats with type 1 diabetes is deterred with low-intensity exercise programme,” Acta Diabetologica, vol. 43, no. 3, pp. 66–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. S. K. Kota, S. K. Kota, S. Jammula, S. Panda, and K. D. Modi, “Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications,” Diabetes Technology and Therapeutics, vol. 13, no. 11, pp. 1155–1160, 2011. View at Publisher · View at Google Scholar
  81. A. J. Woodiwiss, W. J. Kalk, and G. R. Norton, “Habitual exercise attenuates myocardial stiffness in diabetes mellitus in rats,” American Journal of Physiology, vol. 271, no. 5, pp. H2126–H2133, 1996. View at Google Scholar · View at Scopus
  82. Y. M. Searls, I. V. Smirnova, B. R. Fegley, and L. Stehno-Bittel, “Exercise attenuates diabetes-induced ultrastructural changes in rat cardiac tissue,” Medicine and Science in Sports and Exercise, vol. 36, no. 11, pp. 1863–1870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Inoguchi, R. Battan, E. Handler, J. R. Sportsman, W. Heath, and G. L. King, “Preferential elevation of protein kinase C isoform βII and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 11059–11063, 1992. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Loganathan, L. Novikova, I. G. Boulatnikov, and I. V. Smirnova, “Exercise-induced cardiac performance in autoimmune (Type 1) diabetes is associated with a decrease in myocardial diacylglycerol,” Journal of Applied Physiology, vol. 113, no. 5, pp. 817–826, 2012. View at Publisher · View at Google Scholar
  85. S. Le Douairon Lahaye, A. Rebillard, M. S. Zguira et al., “Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats,” Molecular and Cellular Biochemistry, vol. 347, no. 1-2, pp. 53–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Ferko, A. Gvozdjaková, J. Kucharská et al., “Functional remodeling of heart mitochondria in acute diabetes: interrelationships between damage endogenous protection and adaptation,” General Physiology and Biophysics, vol. 25, no. 4, pp. 397–413, 2006. View at Google Scholar
  87. S. Le Douairon Lahaye, A. Gratas-Delamarche, L. Malardé et al., “Combined insulin treatment and intense exercise training improved basal cardiac function and Ca2+-cycling proteins expression in type 1 diabetic rats,” Applied Physiology, Nutrition, and Metabolism, vol. 37, pp. 53–62, 2012. View at Google Scholar
  88. United States Renal Data System, USRDS, “Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States,” Tech. Rep., National Institutes of Health, Bethesda, Md, USA, 2009. View at Google Scholar
  89. N. Evans and E. Forsyth, “End-stage renal disease in people with type 2 diabetes: systemic manifestations and exercise implications,” Physical Therapy, vol. 84, no. 5, pp. 454–463, 2004. View at Google Scholar · View at Scopus
  90. T. A. Russell, “Diabetic nephropathy in patients with type 1 diabetes mellitus,” Nephrology Nursing Journal, vol. 33, no. 1, pp. 15–28, 2006. View at Google Scholar · View at Scopus
  91. R. Zatz, T. W. Meyer, H. G. Rennke, and B. M. Brenner, “Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 17, pp. 5963–5967, 1985. View at Google Scholar · View at Scopus
  92. P. Boor, P. Celec, M. Behuliak et al., “Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats,” Metabolism, vol. 58, no. 11, pp. 1669–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. L. Albright, J. D. Mahan, K. M. Ward, W. M. Sherman, K. L. Roehrig, and T. E. Kirby, “Diabetic nephropathy in an aerobically trained rat model of diabetes,” Medicine and Science in Sports and Exercise, vol. 27, no. 9, pp. 1270–1277, 1995. View at Google Scholar · View at Scopus
  94. M. Kutlu, M. Naziroǧlu, H. Simşek, T. Yilmaz, and A. Ş. Kükner, “Moderate exercise combined with dietary vitamins C and E counteracts oxidative stress in the kidney and lens of streptozotocin-induced diabetic rat,” International Journal for Vitamin and Nutrition Research, vol. 75, no. 1, pp. 71–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C.-C. Peng, K.-C. Chen, C.-L. Hsieh, and R. Y. Peng, “Swimming exercise prevents fibrogenesis in chronic kidney disease by inhibiting the myofibroblast transdifferentiation,” PLoS ONE, vol. 7, no. 6, Article ID e37388, 2012. View at Publisher · View at Google Scholar
  96. A. Raes, D. Matthys, R. Donckerwolcke, M. Craen, S. Van Aken, and J. Vande Walle, “Renal functional changes in relation to hemodynamic parameters during exercise test in normoalbuminuric insulin-dependent children,” Acta Paediatrica, vol. 96, no. 4, pp. 548–551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Dash and O. Torffvit, “How to predict nephropathy in type 1 diabetic patients: routine data or provocation by exercise testing?” Scandinavian Journal of Urology and Nephrology, vol. 37, no. 5, pp. 437–442, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Loganathan, Y. Searls, I. Smirnova, and L. Stehno-Bittel, “Exercise-induced benefits in individuals with type 1 diabetes,” Physical Therapy Reviews, vol. 11, pp. 77–89, 2006. View at Google Scholar
  99. S. Headley, M. Germain, C. Milch et al., “Exercise training improves HR responses and VO2 peak in predialysis kidney patients,” Medicine and Science in Sports and Exercise, vol. 44, no. 12, pp. 2392–2399, 2012. View at Google Scholar
  100. S. A. Greenwood, H. Lindup, K. Taylor et al., “Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 27, supplement 3, pp. iii126–iii134, 2012. View at Publisher · View at Google Scholar
  101. R. Lehmann, V. Kaplan, R. Bingisser, K. E. Bloch, and G. A. Spinas, “Impact of physical activity on cardiovascular risk factors in IDDM,” Diabetes Care, vol. 20, no. 10, pp. 1603–1611, 1997. View at Google Scholar · View at Scopus
  102. S. Heiwe and S. H. Jacobson, “Exercise training for adults with chronic kidney disease.,” Cochrane Database of Systematic Reviews, no. 10, Article ID CD003236, 2011. View at Google Scholar
  103. E. J. Howden, R. G. Fassett, N. M. Isbel, and J. S. Coombes, “Exercise training in chronic kidney disease patients,” Sports Medicine, vol. 42, no. 6, pp. 473–488, 2012. View at Publisher · View at Google Scholar
  104. S. Almeida, M. C. Riddell, and E. Cafarelli, “Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus,” Muscle and Nerve, vol. 37, no. 2, pp. 231–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. G. J. Crowther, J. M. Milstein, S. A. Jubrias, M. J. Kushmerick, R. K. Gronka, and K. E. Conley, “Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes,” American Journal of Physiology, vol. 284, no. 4, pp. E655–E662, 2003. View at Google Scholar · View at Scopus
  106. J. O. Holloszy, “Skeletal muscle “mitochondrial deficiency” does not mediate insulin resistance,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 463S–466S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Item, S. Heinzer-Schweizer, M. Wyss et al., “Mitochondrial capacity is affected by glycemic status in young untrained women with type 1 diabetes but is not impaired relative to healthy untrained women,” American Journal of Physiology, vol. 301, no. 1, pp. R60–R66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. A. R. Harmer, D. J. Chisholm, M. J. McKenna et al., “Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes,” Diabetes Care, vol. 31, no. 11, pp. 2097–2102, 2008. View at Publisher · View at Google Scholar
  109. F. B. Stephens, D. Constantin-teodosiu, and P. L. Greenhaff, “New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle,” Journal of Physiology, vol. 581, no. 2, pp. 431–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Boss, R. Kreis, S. Jenni et al., “Noninvasive assessment of exercise-related intramyocellular acetylcarnitine in euglycemia and hyperglycemia in patients with type 1 diabetes using 1H magnetic resonance spectroscopy: a randomized single-blind crossover study,” Diabetes Care, vol. 34, no. 1, pp. 220–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. D. P. Y. Koonen, C. R. Benton, Y. Arumugam et al., “Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered,” American Journal of Physiology, vol. 286, no. 6, pp. E1042–E1049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. H. J. Kim, J. S. Lee, and C. K. Kim, “Effect of exercise training on muscle glucose transporter 4 protein and intramuscular lipid content in elderly men with impaired glucose tolerance,” European Journal of Applied Physiology, vol. 93, no. 3, pp. 353–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Achten and A. E. Jeukendrup, “Optimizing fat oxidation through exercise and diet,” Nutrition, vol. 20, no. 7-8, pp. 716–727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. N. J. Hoffman and J. S. Elmendorf, “Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis,” Trends in Endocrinology and Metabolism, vol. 22, no. 3, pp. 110–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Frøsig and E. A. Richter, “Improved insulin sensitivity after exercise: focus on insulin signaling,” Obesity, vol. 17, no. 3, pp. S15–S20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Holmes and G. L. Dohm, “Regulation of GLUT4 gene expression during exercise,” Medicine and Science in Sports and Exercise, vol. 36, no. 7, pp. 1202–1206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. R. A. DeFronzo, P. Felig, E. Ferrannini, and J. Wahren, “Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man,” American Journal of Physiology, vol. 1, no. 5, pp. E421–E427, 1980. View at Google Scholar · View at Scopus
  118. A. R. Harmer, P. A. Ruell, M. J. McKenna et al., “Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes,” Journal of Applied Physiology, vol. 100, no. 1, pp. 26–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. Z. Simmons and E. L. Feldman, “Update on diabetic neuropathy,” Current Opinion in Neurology, vol. 15, no. 5, pp. 595–603, 2002. View at Publisher · View at Google Scholar
  120. P. R. Cavanagh, J. A. Derr, J. S. Ulbrecht, R. E. Maser, and T. J. Orchard, “Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus,” Diabetic Medicine, vol. 9, no. 5, pp. 469–474, 1992. View at Google Scholar · View at Scopus
  121. M. A. Pfeifer, D. R. Ross, J. P. Schrage et al., “A highly successful and novel model for treatment of chronic painful diabetic peripheral neuropathy,” Diabetes Care, vol. 16, no. 8, pp. 1103–1115, 1993. View at Google Scholar · View at Scopus
  122. P. M. Kluding, M. Pasnoor, R. Singh et al., “The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy,” Journal of Diabetes and its Complications, vol. 26, no. 5, pp. 424–429, 2012. View at Publisher · View at Google Scholar
  123. K. Howorka, J. Pumprla, P. Haber, J. Koller-Strametz, J. Mondrzyk, and A. Schabmann, “Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy,” Cardiovascular Research, vol. 34, no. 1, pp. 206–214, 1997. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Graham and P. Lasko-McCarthey, “Exercise options for persons with diabetic complications,” The Diabetes educator, vol. 16, no. 3, pp. 212–220, 1990. View at Google Scholar · View at Scopus
  125. K. J. Cruickshanks, S. E. Moss, R. Klein, and B. E. K. Klein, “Physical activity and the risk of progression of retinopathy or the development of proliferative retinopathy,” Ophthalmology, vol. 102, no. 8, pp. 1177–1182, 1995. View at Google Scholar · View at Scopus
  126. M. Al-Jarrah, I. Matalka, H. Aseri et al., “Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes,” Journal of Clinical Medicine and Research, vol. 2, pp. 207–214, 2010. View at Google Scholar
  127. C. S. Moy, T. J. Songer, R. E. LaPorte et al., “Insulin-dependent diabetes mellitus, physical activity, and death,” American Journal of Epidemiology, vol. 137, no. 1, pp. 74–81, 1993. View at Google Scholar · View at Scopus
  128. R. D'hooge, T. Hellinckx, C. Van Laethem et al., “Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial,” Clinical Rehabilitation, vol. 25, no. 4, pp. 349–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. W. R. Komatsu, M. A. Lima Gabbay, M. L. Castro et al., “Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus,” Pediatric Diabetes, vol. 6, no. 3, pp. 145–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. J. E. Peltonen, A. S. Koponen, K. Pullinen et al., “Alveolar gas exchange and tissue deoxygenation during exercise in type 1 diabetes patients and healthy controls,” Respiratory Physiology and Neurobiology, vol. 181, no. 3, pp. 267–276, 2012. View at Publisher · View at Google Scholar
  131. B. van Bussel, S. Soedamah-Muthu, R. Henry et al., “Unhealthy dietary patterns associated with inflammation and endothelial dysfunction in type 1 diabetes: the EURODIAB study,” Nutrition, Metabolism and Cardiovascular Diseases. In press. View at Publisher · View at Google Scholar
  132. A. Veves, R. Saouaf, V. M. Donaghue et al., “Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients,” Diabetes, vol. 46, no. 11, pp. 1846–1852, 1997. View at Google Scholar · View at Scopus
  133. J. C. Baldi, N. A. Cassuto, W. T. Foxx-Lupo, C. M. Wheatley, and E. M. Snyder, “Glycemic status affects cardiopulmonary exercise response in athletes with type i diabetes,” Medicine and Science in Sports and Exercise, vol. 42, no. 8, pp. 1454–1459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. W. R. Komatsu, T. L. B. Neto, A. R. Chacra, and S. A. Dib, “Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes,” Diabetes Care, vol. 33, no. 12, pp. 2555–2557, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Strojek, D. Ziora, J. W. Sroczynski, and K. Oklek, “Pulmonary complications of Type 1 (insulin-dependent) diabetic patients,” Diabetologia, vol. 35, no. 12, pp. 1173–1176, 1992. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Pichler, B. Urlesberger, P. Jirak et al., “Reduced forearm blood flow in children and adolescents with type 1 diabetes (measured by near-infrared spectroscopy),” Diabetes Care, vol. 27, no. 8, pp. 1942–1946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. B. N. Conway, R. G. Miller, and T. J. Orchard, “Are hemoglobin levels elevated in type 1 diabetes?” Diabetes Care, vol. 33, no. 2, pp. 341–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. C. M. Wheatley, J. C. Baldi, N. A. Cassuto, W. T. Foxx-Lupo, and E. M. Snyder, “Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes: Alveolar-capillary membrane conductance in type 1 diabetes,” European Journal of Applied Physiology, vol. 111, no. 3, pp. 567–578, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. L. Brugnara, M. Vinaixa, S. Murillo et al., “Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus,” PLoS ONE, vol. 7, no. 7, Article ID e40600, 2012. View at Publisher · View at Google Scholar
  140. E. Heyman, P. Delamarche, P. Berthon et al., “Alteration insympathoadrenergic activity at rest andduring intense exercise despite normal aerobic fitness inlate pubertal adolescent girls with type 1diabetes,” Diabetes and Metabolism, vol. 33, no. 6, pp. 422–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Bjørgaas and K. Aasarød, “Circulatory responses to hypoglycaemia in diabetic and non-diabetic children,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 63, no. 3, pp. 233–238, 2003. View at Publisher · View at Google Scholar
  142. P. Bottini, E. Boschetti, S. Pampanelli et al., “Contribution of autonomic neuropathy to reduced plasma adrenallne responses to hypoglycemia in IDDM: evidence for a nonselective defect,” Diabetes, vol. 46, no. 5, pp. 814–823, 1997. View at Google Scholar · View at Scopus
  143. S. Roberto, E. Marongiu, M. Pinna et al., “Altered hemodynamics during muscle metaboreflex in young, type 1 diabetes patients,” Journal of Applied Physiology, vol. 11, no. 8, pp. 1323–1331, 2012. View at Google Scholar
  144. Z. Vered, A. Battler, and P. Segal, “Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy),” American Journal of Cardiology, vol. 54, no. 6, pp. 633–637, 1984. View at Google Scholar · View at Scopus
  145. V. C. Baum, L. L. Levitsky, and R. M. Englander, “Abnormal cardiac function after exercise in insulin-dependent diabetic children and adolescents,” Diabetes Care, vol. 10, no. 3, pp. 319–323, 1987. View at Google Scholar · View at Scopus
  146. B. K. Williams, K. J. Guelfi, T. W. Jones, and E. A. Davis, “Lower cardiorespiratory fitness in children with Type 1 diabetes,” Diabetic Medicine, vol. 28, no. 8, pp. 1005–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. G. Fuchsjäger-Mayrl, J. Pleiner, G. F. Wiesinger et al., “Exercise training improves vascular endothelial function in patients with type 1 diabetes,” Diabetes Care, vol. 25, no. 10, pp. 1795–1801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Zisser, P. Gong, C. Kelley, J. Seidman, and M. Riddell, “Exercise and diabetes,” International Journal of Clinical Practice, vol. 170, pp. 71–75, 2011. View at Google Scholar
  149. E. Tsalikian, N. Maurus, R. Beck, K. Janz, and H. Chase, “Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus,” Journal of Pediatrics, vol. 147, no. 4, pp. 528–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. M. J. Tansey, E. Tsalikian, R. W. Beck et al., “The effects of aerobic exercise on glucose and counterregulatory hormone concentrations in children with type 1 diabetes,” Diabetes Care, vol. 29, no. 1, pp. 20–25, 2006. View at Google Scholar · View at Scopus
  151. L. Kilbride, J. Charlton, G. Aitken, G. W. Hill, R. C. Davison, and J. A. Mcknight, “Managing blood glucose during and after exercise in Type 1 diabetes: reproducibility of glucose response and a trial of a structured algorithm adjusting insulin and carbohydrate intake,” Journal of Clinical Nursing, vol. 20, no. 23-24, pp. 3423–3429, 2011. View at Publisher · View at Google Scholar
  152. A. S. Brazeau, R. Rabasa-Lhoret, I. Strychar, and H. Mircescu, “Barriers to physical activity among patients with type 1 diabetes,” Diabetes Care, vol. 31, no. 11, pp. 2108–2109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. D. J. West, R. D. Morton, S. C. Bain, J. W. Stephens, and R. M. Bracken, “Blood glucose responses to reductions in pre-exercise rapid-acting insulin for 24 h after running in individuals with type 1 diabetes,” Journal of Sports Sciences, vol. 28, no. 7, pp. 781–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. C. Kapitza, U. Hövelmann, L. Nosek, H. J. Kurth, M. Essenpreis, and L. Heinemann, “Continuous glucose monitoring during exercise in patients with type 1 diabetes on continuous subcutaneous insulin infusion,” Journal of Diabetes Science and Technology, vol. 4, no. 1, pp. 123–131, 2010. View at Google Scholar · View at Scopus
  155. P. Adolfsson, S. Nilsson, and B. Lindblad, “Continuous glucose monitoring system during physical exercise in adolescents with type 1 diabetes,” Acta Paediatrica, vol. 100, no. 12, pp. 1603–1609, 2011. View at Publisher · View at Google Scholar
  156. M. C. Riddell and J. Milliken, “Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: an observational field study,” Diabetes Technology and Therapeutics, vol. 13, no. 8, pp. 819–825, 2011. View at Publisher · View at Google Scholar · View at Scopus