Table of Contents
ISRN Chemical Engineering
Volume 2012 (2012), Article ID 327049, 8 pages
http://dx.doi.org/10.5402/2012/327049
Research Article

Optimization of Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Response Surface Methodology

1Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
2NUS Environmental Research Institute, National University of Singapore, Singapore 117411

Received 5 October 2012; Accepted 8 November 2012

Academic Editors: T. García and M. Kostoglou

Copyright © 2012 Prerna Goyal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Jain and M. P. Sharma, “Kinetics of acid base catalyzed transesterification of Jatropha curcas oil,” Bioresource Technology, vol. 101, no. 20, pp. 7701–7706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Boonmee, S. Chuntranuluck, V. Punsuvon, and P. Silayoi, “Optimization of biodiesel production from jatropha oil (Jatropha curcas L.) using response surface methodology,” Kasetsart Journal, vol. 44, no. 2, pp. 290–299, 2010. View at Google Scholar · View at Scopus
  3. A. K. Tiwari, A. Kumar, and H. Raheman, “Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process,” Biomass and Bioenergy, vol. 31, no. 8, pp. 569–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. H. Chin, B. H. Hameed, and A. L. Ahmad, “Process optimization for biodiesel production from waste cooking palm oil (Elaeis guineensis) using response surface methodology,” Energy and Fuels, vol. 23, no. 2, pp. 1040–1044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. T. Jeong and D. H. Park, “Optimization of biodiesel production from castor oil using response surface methodology,” Applied Biochemistry and Biotechnology, vol. 156, no. 1–3, pp. 431–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. T. Jeong, H. S. Yang, and D. H. Park, “Optimization of transesterification of animal fat ester using response surface methodology,” Bioresource Technology, vol. 100, no. 1, pp. 25–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong, and G. Huang, “Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology,” Renewable Energy, vol. 33, no. 7, pp. 1678–1684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Rashid, F. Anwar, T. M. Ansari, M. Arif, and M. Ahmad, “Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 9, pp. 1364–1370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Jain and M. P. Sharma, “Correlation development for the effect of metal contaminants on the thermal stability of jatropha curcas biodiesel,” Energy and Fuels, vol. 25, no. 3, pp. 1276–1283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Shandilya, P. K. Jain, and N. K. Jain, “Modeling and analysis of surface roughness in WEDC of SiCP/6061 Al MMC through response surface methodology,” International Journal of Engineering Science & Technology, vol. 3, no. 1, pp. 531–535, 2011. View at Google Scholar
  11. D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Freedman, E. H. Pryde, and T. L. Mounts, “Variables affecting the yields of fatty esters from transesterified vegetable oils,” Journal of the American Oil Chemists Society, vol. 61, no. 10, pp. 1638–1643, 1984. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Rashid, F. Anwar, A. Jamil, and H. N. Bhatti, “Jatropha curcas seed oil as a viable source for biodiesel,” Pakistan Journal of Botany, vol. 42, no. 1, pp. 575–582, 2010. View at Google Scholar · View at Scopus