Table of Contents
Volume 2012, Article ID 340632, 14 pages
Review Article

Polymer-Based Delivery of Glucagon-Like Peptide-1 for the Treatment of Diabetes

Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA

Received 21 February 2012; Accepted 16 March 2012

Academic Editors: M. Komatsu and J.-F. Tanti

Copyright © 2012 Pyung-Hwan Kim and Sung Wan Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The incretin hormones, glucagon-like peptide-1 (GLP-1) and its receptor agonist (exendin-4), are well known for glucose homeostasis, insulinotropic effect, and effects on weight loss and food intake. However, due to the rapid degradation of GLP-1 by dipeptidylpeptidase-IV (DPP-IV) enzyme and renal elimination of exendin-4, their clinical applications have been restricted. Although exendin-4 has longer half-life than GLP-1, it still requires frequent injections to maintain efficacy for the treatment of diabetes. In recent decades, various polymeric delivery systems have been developed for the delivery of GLP-1 and exendin-4 genes or peptides for their long-term action and the extra production in ectopic tissues. Herein, we discuss the modification of the expression cassettes and peptides for long-term production and secretion of the native peptides. In addition, the characteristics of nonviral or viral system used for a delivery of a modified GLP-1 or exendin-4 are described. Furthermore, recent efforts to improve the biological half-life of GLP-1 or exendin-4 peptide via chemical conjugation with various smart polymers via chemical conjugation compared with native peptide are discussed.