Table of Contents
ISRN Veterinary Science
Volume 2012, Article ID 345927, 6 pages
http://dx.doi.org/10.5402/2012/345927
Research Article

The Effect of a Silage Inoculant on Silage Quality, Aerobic Stability, and Meat Production on Farm Scale

1Biomin Holding GmbH, Herzogenburg 3130, Austria
2Department of Animal Nutrition and Feeds, Institute of Animal Science of Lithuanian Veterinary Academy, Baisogala 82317, Lithuania

Received 19 December 2011; Accepted 15 February 2012

Academic Editor: Z. G. Weinberg

Copyright © 2012 Y. Acosta Aragón et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Wilkins, L. Syrjala-Qvist, and K. K. Bolsen, “The future role of silage in sustainable animal production,” in Proceedings of the 12th International Silage Conference, pp. 23–40, Uppsala, Sweden, 1999.
  2. R. J. Merry, R. Jones, and K. M. Theodorou, “The conservation of grass,” in Grass. Its Production and Utilisation, A. Hopkins, Ed., Blackwell Science, Oxford: UK, 3rd edition, 2000. View at Google Scholar
  3. D. Ziggers, “Good or bad guys determine silage quality,” Dairy and beef, vol. 2, pp. 27–29, 2003. View at Google Scholar
  4. J. A. Rooke, F. M. Maya, J. A. Arnold, and D. G. Armstrong, “The chemical composition and nutritive value of grass silages prepared with no additive or with the application of additives either Lactobacillus plantarum or formic acid,” Grass and Forage Science, vol. 43, pp. 87–95, 1988. View at Google Scholar
  5. E. Saarisalo, E. Skyttä, A. Haikara, T. Jalava, and S. Jaakkola, “Screening and selection of lactic acid bacteria strains suitable for ensiling grass,” Journal of Applied Microbiology, vol. 102, no. 2, pp. 327–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Weddell, R. Agnew, and B. Cottrill, “The UK forage additives approval scheme—developments and products approvals,” in Proceedings of the 13th International Silage Conference, pp. 230–231, Auchincruive, UK, 2002.
  7. R. E. Muck and L. Kung Jr., “Effects of silage additives on ensiling,” in Proceedings of the Silage: Field to Feed Bunk North American Conference, no. NRAES -99, pp. 187–199, 1997.
  8. E. Muck, F. E. Contreras, and D. R. Mertens , “Silage inoculant effects on in vitro rumen fermentation,” Journal of Animal Science, vol. 85, p. 284, 2007. View at Google Scholar
  9. I. Filya, A. Karabulut, and E. Sucu, “The effect of Lactobacillus plantarum and Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of corn silage in warm climate,” in Proceedings of the 13th International Silage Conference, 2002.
  10. N. J. Moon, “Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures,” Journal of Applied Bacteriology, vol. 55, no. 3, pp. 453–460, 1983. View at Google Scholar · View at Scopus
  11. Y. Tyrolová and A. Výborná, “Effect of the stage of maturity on the leaf percentage of lucerne and the effect of additives on silage characteristics,” Czech Journal of Animal Science, vol. 53, no. 8, pp. 330–335, 2008. View at Google Scholar · View at Scopus
  12. N. K. Ranjit and L. Kung, “The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage,” Journal of Dairy Science, vol. 83, no. 3, pp. 526–535, 2000. View at Google Scholar · View at Scopus
  13. H. Danner, M. Holzer, E. Mayrhuber, and R. Braun, “Acetic acid increases stability of silage under aerobic conditions,” Applied and Environmental Microbiology, vol. 69, no. 1, pp. 562–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Merry, R. Jones, and M. K. Theodorou, “The conservation of grass,” in Grass. Its Production and Utilisation, A. Hopkins, Ed., Blackwell Science, Oxford, UK, 3rd edition, 2000. View at Google Scholar
  15. M. Marciňáková, A. Laukova, M. Simonova, V. Strompfova, B. Korenekova, and P. Naď, “Probiotic properties of Enterococcus faecium EF9296 strain isolated from silage,” Czech Journal of Animal Science, vol. 53, pp. 336–345, 2008. View at Google Scholar
  16. Davies D. R., “Silage inoculants—where next?” in Proceedings of the 14th International Symposium Forage Conservation, V. Jambor, S. Jamborova, B. Vosynkova, P. Prochacka, D. Vosynkova, and D. Kumprechtova, Eds., pp. 32–39, Mendel University, Brno, Czech Republic, 2010.
  17. J. Jatkauskas and V. Vrotniakiene, “Fermentation characteristics and nutritive value of inoculated corn silage,” in Proceedings of the 20th general meeting of EGF, pp. 1077–1079, Luzern, Switzerland, 2004.
  18. G. Pahlow and H. Honig, “The role of microbial additives in the aerobic stability of silage,” in Proceedings of the 15th General Meeting of EGF, pp. 149–152, The Netherlands, 1994.
  19. L. Kung, M. R. Stokes, and C. J. Lin, “Silage additives,” in Silage Science and Technology, D. R. Buxton, R. E. Muck, and J. H. Harison, Eds., Agronomy Series, no. 42, p. 305, Madison, Wis, USA, 360. View at Google Scholar
  20. P. McDonald, A. R. Henderson, and S. J. E. Heron, Eds., The Biochemistry of Silage, Chalcombe, Bucks, UK, 2nd edition, 1991.
  21. Z. G. Weinberg and R. E. Muck, “New trends and opportunities in the development and use of inoculants for silage,” FEMS Microbiology Reviews, vol. 19, no. 1, pp. 53–68, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Driehuis, S. J. W. H. Oude Elferink, and S. F. Spoelstra, “Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability,” Journal of Applied Microbiology, vol. 87, no. 4, pp. 583–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. R.A. Reis, G. R. Almeida, G. R. Siqueira, E. R. Bernardes, and E. Janusckiewicz, “Microbial changes and aerobic stability in high moisture corn silages inoculated with Lactobacillus buchneri,” in Proceedings of the 14th International Silage Conference, R. S Park and M. D. Stronge, Eds., p. 223, Belfast, UK, 2005.
  24. L. Cooke, “New strains slow silage spoilage,” Agricultural Research, vol. 40, article 17, 1995. View at Google Scholar
  25. J. A. Rooke, “Acetate silages: microbiology and chemistry. Landbauforsch,” Voelkenrode Sonderheft, vol. 123, pp. 309–312, 1991. View at Google Scholar
  26. R. M. Luther, “Effect of microbial inoculation of whole-plant corn silage on chemical characteristics, preservation and utilization by steers,” Journal of Animal Science, vol. 63, pp. 13–29, 1986. View at Google Scholar