Table of Contents
ISRN Agronomy
Volume 2012, Article ID 367851, 8 pages
http://dx.doi.org/10.5402/2012/367851
Research Article

Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum aestivum L.) Genotypes under Saline and Heat Stress Conditions

1Genetic, Biochemistry & Plant Biotechnology Laboratory, Constantine University, Constantine 25000, Algeria
2Plant Protection & Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia
3Biology Department, Faculty of Sciences, Sétif University, Sétif 19000, Algeria

Received 22 August 2011; Accepted 21 September 2011

Academic Editors: W. J. Rogers and Z. Yanqun

Copyright © 2012 Laid Benderradji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Karp, S. H. Steel, S. Parmar, M. G. K. Jones, P. R. Shewry, and A. Breiman, “Relative stability among barley plants regenerated from cultured immature embryos,” Genome, vol. 29, pp. 405–412, 1987. View at Google Scholar
  2. M. Özgen, M. Türet, S. Altinok, and C. Sancak, “Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes,” Plant Cell Reports, vol. 18, no. 3-4, pp. 331–335, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Özgen, M. Türet, S. Özcan, and C. Sancak, “Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes,” Plant Breeding, vol. 115, no. 6, pp. 455–458, 1996. View at Google Scholar
  4. F. A. Redway, V. Vasil, D. Lu, and I. K. Vasil, “Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.),” Theoretical and Applied Genetics, vol. 79, no. 5, pp. 609–617, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Benkirane, K. Sabounji, A. Chlyah, and H. Chlyah, “Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat,” Plant Cell, Tissue and Organ Culture, vol. 61, no. 2, pp. 107–113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ahmad, H. Zhong, W. Wang, and M. B. Sticklen, “Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L.),” In Vitro Cellular and Developmental Biology, vol. 38, no. 2, pp. 163–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Armstrong, S. G. Metz, and P. N. Mascia, “Two regeneration systems for the production of haploid plants from wheat anther culture,” Plant Science, vol. 51, no. 2-3, pp. 231–237, 1987. View at Google Scholar · View at Scopus
  8. F. Delporte, O. Mostade, and J. M. Jacquemen, “Plant regeneration through callus initiation from thin mature embryo fragments of wheat (Triticum aestivum) genotypes,” Plant Cell, Tissue and Organ Culture, vol. 67, no. 1, pp. 73–80, 2001. View at Google Scholar
  9. J. M. Zale, H. Borchardt-Wier, K. K. Kidwell, and C. M. Steber, “Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes,” Plant Cell, Tissue and Organ Culture, vol. 76, no. 3, pp. 277–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yu, J. Wang, M. L. Zhu, and Z. M. Wei, “Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China,” Plant Breeding, vol. 127, no. 3, pp. 249–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Jiang, C. Myeong-Je, and P. G. Lemaux, “Improved callus quality and prolonged regenerability in model and recalcitrant barley (Hordeum vulgare L.) cultivars,” Plant Biotechnology, vol. 15, no. 2, pp. 63–69, 1998. View at Google Scholar · View at Scopus
  12. A. M. Castillo, B. Egaña, J. M. Sanz, and L. Cistué, “Somatic embryogenesis and plant regeneration from barley cultivars grown in Spain,” Plant Cell Reports, vol. 17, no. 11, pp. 902–906, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ganeshan, M. Baga, B. L. Harwey, B. G. Rossnagel, G. J. Scoles, and R. N. Chibbar, “Production of multiple s hoots from thiadiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare L.),” Plant Cell, Tissue and Organ Culture, vol. 73, pp. 57–64, 2003. View at Google Scholar
  14. M. Dracup, “Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms,” Australian Journal of Plant Physiology, vol. 18, pp. 1–15, 1991. View at Google Scholar
  15. M. Tal, “In vitro selection for salt tolerance in crop plants: theoretical and practical considerations,” In Vitro Cellular and Developmental Biology, vol. 30, no. 4, pp. 175–180, 1994. View at Google Scholar · View at Scopus
  16. M. N. Barakat and T. H. Abdel-Latif, “In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration,” Euphytica, vol. 91, no. 2, pp. 127–140, 1996. View at Google Scholar · View at Scopus
  17. M. Karadimova and G. Djambova, “Increased NaCl-tolerance in wheat (Triticum aestivum L. and T. durum Desf.) through in vitro selection,” In Vitro Cellular and Developmental Biology, vol. 23, pp. 180–182, 1993. View at Google Scholar
  18. S. Lutts, J. M. Kinet, and J. Bouharmont, “Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance,” Plant Growth Regulation, vol. 19, no. 3, pp. 207–218, 1996. View at Google Scholar · View at Scopus
  19. R. H. Ellis, R. J. Summerfield, G. O. Edmeades, and R. H. Roberts, “Photoperiod, temperature, and the interval from sowing to tassel initiation in diverse cultivars of maize,” Crop Science, vol. 32, pp. 1225–1232, 1992. View at Google Scholar
  20. H. S. Saini and D. Aspinall, “Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid,” Australian Journal of Plant Physiology, vol. 9, pp. 529–537, 1982. View at Google Scholar
  21. R. J. Jones, J. A. Roessler, and S. Ouattar, “Thermal environment during endosperm cell division in maize: effect on number of endosperm cells and starch granules,” Crop Science, vol. 25, pp. 830–834, 1985. View at Google Scholar
  22. M. Gong, S. N. Chen, Y. Q. Song, and Z. G. Li, “Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings,” Australian Journal of Plant Physiology, vol. 24, no. 3, pp. 371–379, 1997. View at Google Scholar · View at Scopus
  23. J. A. Anderson and S. R. Padhye, “Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed vinca and sweet pea leaves,” Journal of the American Society for Horticultural Science, vol. 129, no. 1, pp. 54–59, 2004. View at Google Scholar · View at Scopus
  24. J. A. Imlay and S. Linn, “DNA damage and oxygen radical toxicity,” Science, vol. 240, no. 4857, pp. 1302–1309, 1988. View at Google Scholar · View at Scopus
  25. C. M. Creus, R. J. Sueldo, and C. A. Barassi, “Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field,” Canadian Journal of Botany, vol. 82, no. 2, pp. 273–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures,” Physiologia Plantarum, vol. 15, pp. 473–497, 1962. View at Google Scholar
  27. D. G. He, Y. M. Yang, and K. J. Scott, “A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium,” Plant Science, vol. 57, no. 3, pp. 225–233, 1988. View at Google Scholar · View at Scopus
  28. J. M. Gonzalez, E. Friero, and N. Jouve, “Influence of genotype and culture medium on callus formation and plant regeneration from immature embryos of (Triticum turgidum Desf.) cultivars,” Plant Breeding, vol. 120, no. 6, pp. 513–517, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Rashid, R. A. Ghani, Z. Chaudhry, S. M. S. Naqvi, and A. Quraishi, “Effects of media, growth regulators and genotypes on callus induction and regeneration in wheat (Triticum aestivum L.),” Biotechnology, vol. 1, no. 1, pp. 46–54, 2002. View at Google Scholar
  30. J. Y. Chen, R. Q. Yue, H. X. Xu, X.-J. Chen, and Y. M. Zhang, “Study on plant regeneration of wheat mature embryos under endosperm-supported culture,” Agricultural Sciences in China, vol. 5, no. 8, pp. 572–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. G. Nasircilar, K. Turgut, and K. Fiskin, “Callus induction and plant regeneration from mature embryos of different wheat genotypes,” Pakistan Journal of Botany, vol. 38, no. 3, pp. 637–645, 2006. View at Google Scholar · View at Scopus
  32. P. J. Dale and E. Deambrogio, “A comparison of callus induction and plant regeneration from different explants of (Hordeum vulgare L.),” Zeitschrift fur Pflanzenzuchtung, vol. 94, pp. 65–77, 1976. View at Google Scholar
  33. R. G. Dani, “Biotechnological research of cotton: two decades in soviet retrospection,” Advances in Plant Sciences, vol. 5, pp. 433–447, 1992. View at Google Scholar
  34. A. Chaudhury and R. Qu, “Somatic embryogenesis and plant regeneration of turf-type bermudagrass: effect of 6-benzyladenine in callus induction medium,” Plant Cell, Tissue and Organ Culture, vol. 60, no. 2, pp. 113–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. D. E. Bradle, A. H. Bruneau, and R. Qu, “Effects of cultivar explant treatment, and medium supplements on callus induction and plantlet regeneration in perennial ryegrass,” International Turfgrass Society Research Journal, vol. 9, pp. 152–156, 2001. View at Google Scholar
  36. D. G. He, G. Tanner, and K. J. Scott, “Somatic embryogenesis and morphogenesis in callus derived from the epiblast of immature embryos of wheat (Triticum aestivum),” Plant Science, vol. 45, no. 2, pp. 119–124, 1986. View at Google Scholar · View at Scopus
  37. P. Bregitzer, L. S. Dahleen, and R. D. Campbell, “Enhancement of plant regeneration from embryogenic callus of commercial barley cultivars,” Plant Cell Reports, vol. 17, no. 12, pp. 941–945, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. R. Balli, B. G. Rossnagel, and K. K. Kartha, “Evaluation of 10 Canadian barley (Hordeum vulgare L.), Cultivars for tissue culture response,” Canadian Journal of Plant Science, vol. 73, pp. 171–174, 1993. View at Google Scholar
  39. S. A. El-Meleigy, M. F. Gabr, F. H. Mohamed, and M. A. Ismail, “Responses to NaCl salinity of tomato cultivated and breeding lines differing in salt tolerance in callus cultures,” International Journal of Agriculture & Biology, vol. 6, no. 1, pp. 19–26, 2004. View at Google Scholar
  40. A. M. Rus, M. Panoff, F. Perez-Alfocea, and M. C. Bolarin, “NaCl responses in tomato calli and whole plants,” Journal of Plant Physiology, vol. 155, no. 6, pp. 727–733, 1999. View at Google Scholar · View at Scopus
  41. A. M. Rus, S. Rios, E. Olmos, A. Santa-Cruz, and M. C. Bolarin, “Long-term culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species,” Journal of Plant Physiology, vol. 157, no. 4, pp. 413–420, 2000. View at Google Scholar · View at Scopus
  42. D. M. Chen, F. J. Keiper, and L. F. De Filippis, “Physiological changes companying the induction of salt tolerance in Eucalyptus microcroys shoots in tissue culture,” Journal of Plant Physiology, vol. 152, pp. 555–563, 1998. View at Google Scholar
  43. T. Abebe, A. C. Guenzi, B. Martin, and J. C. Cushman, “Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity,” Plant Physiology, vol. 131, no. 4, pp. 1748–1755, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. L. Benderradji, F. Brini, S. Ben Amar et al., “Sodium transport in seedlings of two bread wheat (Triticum aestivum L.) genotypes differing in their tolerance to salt stress,” Australian Journal of Crop Sciences, vol. 5, no. 3, pp. 233–241, 2011. View at Google Scholar
  45. S. Lutts, M. Almansouri, and J. M. Kinet, “Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus,” Plant Science, vol. 167, no. 1, pp. 9–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Richards, “Defining selection criteria to improve yield under drought,” Plant Growth Regulation, vol. 20, no. 2, pp. 157–166, 1996. View at Google Scholar · View at Scopus
  47. H. J. Bohnert, R. G. Jensen, T. J. Flowers, and A. R. Yeo, “Metabolic engineering for increased salt tolerance—the next step,” Australian Journal of Plant Physiology, vol. 23, no. 5, pp. 661–667, 1996. View at Google Scholar · View at Scopus
  48. I. Winicov, “Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines,” Plant Science, vol. 113, no. 1, pp. 105–111, 1996. View at Google Scholar · View at Scopus