Table of Contents
ISRN Thermodynamics
Volume 2012, Article ID 373202, 16 pages
http://dx.doi.org/10.5402/2012/373202
Research Article

Mixed Convection Heat Transfer for Nanofluids in a Lid-Driven Shallow Rectangular Cavity Uniformly Heated and Cooled from the Vertical Sides: The Cooperative Case

1Laboratory of Flows and Transfers Modelling (LAMET), Physics Department, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
2Interdisciplinary Laboratory of Research in Sciences and Technologies (LIRST), Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco
3Laboratory of Fluid Mechanics and Energetics (LMFE), Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco

Received 19 September 2012; Accepted 15 October 2012

Academic Editors: R. J. Abergel, M. Manciu, and S. Yulin

Copyright © 2012 Hassan Elharfi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., vol. 66, pp. 99–105, American Society of Mechanical Engineers, New York, NY, USA, 1995. View at Google Scholar
  2. W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, “Review and assessment of nanofluid technology for transportation and other applications,” Tech. Rep. ANL/ESD/07-9, Energy Systems Division, Argonne National Laboratory, 2007. View at Google Scholar
  3. M. Corcione, “Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1536–1546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. B. Pilkington, “Review lecture: the float glass process,” Proceedings of the Royal Society of London Series A, vol. 314, pp. 1–25, 1969. View at Google Scholar
  5. F. J. K. Ideriah, “Prediction of turbulent cavity flow driven by buoyancy and shear,” Journal of Mechanical Engineering Science, vol. 22, no. 6, pp. 287–295, 1980. View at Google Scholar · View at Scopus
  6. J. Imberger and P. F. Hamblin, “Dynamics of lakes, reservoirs, and cooling ponds,” Annual Review of Fluid Mechanics, vol. 14, pp. 153–187, 1982. View at Google Scholar · View at Scopus
  7. C. K. Cha and Y. Jaluria, “Recirculating mixed convection flow for energy extraction,” International Journal of Heat and Mass Transfer, vol. 27, no. 10, pp. 1801–1812, 1984. View at Google Scholar · View at Scopus
  8. R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2002–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Abu-Nada and A. J. Chamkha, “Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid,” European Journal of Mechanics B, vol. 29, no. 6, pp. 473–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mahmoodi, “Mixed convection inside nanofluid filled rectangular enclosures with moving bottom wall,” Thermal Sciences, vol. 15, no. 3, pp. 889–903, 2011. View at Google Scholar
  11. M. A. Mansour, R. A. Mohamed, M. M. Abd-Elaziz, and S. E. Ahmed, “Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1504–1512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Muthtamilselvan, P. Kandaswamy, and J. Lee, “Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1501–1510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, and A. A. R. Darzi, “Lattice Boltzmann simulation of nanofluid in lid-driven cavity,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1528–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Talebi, A. H. Mahmoudi, and M. Shahi, “Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 79–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Sheikhzadeh, N. Hajialigol, M. E. Qomi, and A. Fattahi, “Laminar mixed convection of Cu-water nano-fluid in two sided lid-driven enclosures,” Journal of Nanostructures, vol. 1, pp. 44–53, 2012. View at Google Scholar
  16. A. Karimipour, M. Afrand, and M. M. Bazofti, “Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion,” International Journal of Mechanical and Materials Engineering, vol. 71, pp. 135–140, 2010. View at Google Scholar · View at Scopus
  17. Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. E. B. Öǧüt, “Natural convection of water-based nanofluids in an inclined enclosure with a heat source,” International Journal of Thermal Sciences, vol. 48, no. 11, pp. 2063–2073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Lamsaadi, M. Naïmi, and M. Hasnaoui, “Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-newtonian power law fluids,” Energy Conversion and Management, vol. 47, no. 15-16, pp. 2535–2551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, USA, 1980.
  21. E. Abu-Nada, Z. Masoud, and A. Hijazi, “Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids,” International Communications in Heat and Mass Transfer, vol. 35, no. 5, pp. 657–665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bejan, “The boundary layer regime in a porous layer with uniform heat flux from side,” International Journal of Heat and Mass Transfer, vol. 26, no. 9, pp. 1339–1346, 1983. View at Google Scholar · View at Scopus