Table of Contents
ISRN Optics
Volume 2012, Article ID 373968, 6 pages
http://dx.doi.org/10.5402/2012/373968
Research Article

Photonic Eigenmodes in a Photonic Crystal Membrane

1Institute of Semiconductor Physics of NAS of Ukraine, Nauki Prsp., 45, 03028 Kiev, Ukraine
2Institute of Physics, University of Leoben, Franz Josef Straße 18, 8700 Leoben, Austria

Received 24 November 2011; Accepted 21 December 2011

Academic Editors: K. Hane and S. R. Restaino

Copyright © 2012 E. Ya. Glushko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Marker and C. H. Jenkins, “Surface precision of optical membranes with curvature,” Optics Express, vol. 1, no. 11, pp. 324–331, 1997. View at Google Scholar · View at Scopus
  2. H. M. Dyson, R. M. Sharples, N. A. Dipper, and G. V. Vdovin, “Cryogenic wavefront correction using membrane deformable mirrors,” Optics Express, vol. 8, no. 1, pp. 17–26, 2001. View at Google Scholar · View at Scopus
  3. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Optics Express, vol. 6, no. 9, pp. 175–185, 2000. View at Google Scholar · View at Scopus
  4. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philysophical Magazine, vol. 4, pp. 396–402, 1902. View at Google Scholar
  5. V. N. Astratov, D. M. Whittaker, I. S. Culshaw et al., “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Physical Review B, vol. 60, no. 24, pp. R16255–R16258, 1999. View at Google Scholar · View at Scopus
  6. V. N. Astratov, I. S. Culshaw, R. M. Stevenson et al., “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” Journal of Lightwave Technology, vol. 17, no. 11, pp. 2050–2057, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Physical Review B, vol. 53, no. 11, pp. 7134–7142, 1996. View at Google Scholar · View at Scopus
  8. V. M. Fitio and Y. V. Bobitski, “Diffraction analysis by periodic structures using a method of coupled waves,” Opto-Electronics Review, vol. 13, no. 4, pp. 331–339, 2005. View at Google Scholar · View at Scopus
  9. C. Grillet, D. Freeman, B. Luther-Davies et al., “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Optics Express, vol. 14, no. 1, pp. 369–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Birner, R. B. Wehrspohn, U. M. Gösele, and K. Busch, “Silicon-based photonic crystals,” Advanced Materials, vol. 13, no. 6, pp. 377–388, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kellegoz, I. Ozkan, and M. S. Kilickaya, “Performance effects of proton exchange membrane fuel cell at various operating temperatures,” Journal of Optoelectronics and Advanced Materials, vol. 10, no. 2, pp. 369–372, 2008. View at Google Scholar · View at Scopus
  12. Y. Wang, Y. Kanamori, J. Ye, H. Sameshima, and K. Hane, “Fabrication and characterization of nanoscale resonant gratings on thin silicon membrane,” Optics Express, vol. 17, no. 7, pp. 4938–4943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. P. White, L. O'Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Optics Express, vol. 16, no. 21, pp. 17076–17081, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostructures, vol. 1, no. 1, pp. 37–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. H. Hwang and G. H. Song, “Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure,” Optics Express, vol. 13, no. 6, pp. 1948–1957, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mujumdar, A. F. Koenderink, T. Sünner et al., “Near-field imaging and frequency tuning of a high Q photonic crystal membrane microcavity,” Optics Express, vol. 15, no. 25, pp. 17214–17220, 2007. View at Google Scholar · View at Scopus
  17. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Optics Express, vol. 11, no. 22, pp. 2927–2939, 2003. View at Google Scholar · View at Scopus
  18. T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Optics Express, vol. 14, no. 18, pp. 8184–8188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Y. Glushko, “Switching of electromagnetic eigenwaves in metastructures,” in Photonic Crystal Materials and Devices, vol. 6989 of Proceedings of SPIE, 2008.
  20. E. Y. Glushko, A. E. Glushko, V. N. Evteev, and A. N. Stepanyuk, “Electromagnetic eigenwaves in metastructures: perturbation theory method,” in Nanophotonics II, vol. 6988 of Proceedings of SPIE, p. 118, 2008.
  21. E. Ya. Glushko, “All-optical signal processing in photonic structures with nonlinearity,” Optics Communications, vol. 247, no. 4–6, pp. 275–280, 2005. View at Publisher · View at Google Scholar
  22. E. Ya. Glushko, Optics Express 18, p. 3071, 2010.
  23. E. Y. Glushko, A. E. Glushko, V. N. Evteev, and A. N. Stepanyuk, “All-optical signal processing based on trapped modes of a photonic crystal resonator,” in 3rd Nonlinear Optics and Applications, vol. 7354 of Proceedings of SPIE, 2009.
  24. L. A. Karachevtseva, O. O. Lytvynenko, E. O. Malovichko, O. J. Stronska, E. V. Busaneva, and O. D. Gorchinsky, “Optical transmittance of 2D macroporous silicon structures,” Semiconductor Physics, vol. 4, no. 4, pp. 347–351, 2001. View at Google Scholar