Table of Contents
ISRN Artificial Intelligence
Volume 2012, Article ID 376804, 19 pages
Review Article

Bag-of-Words Representation in Image Annotation: A Review

Department of Information Management, National Central University, Jhongli 32001, Taiwan

Received 26 August 2012; Accepted 19 September 2012

Academic Editors: F. Camastra, J. A. Hernandez, P. Kokol, J. Wang, and S. Zhu

Copyright © 2012 Chih-Fong Tsai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Content-based image retrieval (CBIR) systems require users to query images by their low-level visual content; this not only makes it hard for users to formulate queries, but also can lead to unsatisfied retrieval results. To this end, image annotation was proposed. The aim of image annotation is to automatically assign keywords to images, so image retrieval users are able to query images by keywords. Image annotation can be regarded as the image classification problem: that images are represented by some low-level features and some supervised learning techniques are used to learn the mapping between low-level features and high-level concepts (i.e., class labels). One of the most widely used feature representation methods is bag-of-words (BoW). This paper reviews related works based on the issues of improving and/or applying BoW for image annotation. Moreover, many recent works (from 2006 to 2012) are compared in terms of the methodology of BoW feature generation and experimental design. In addition, several different issues in using BoW are discussed, and some important issues for future research are discussed.