Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 385415, 8 pages
http://dx.doi.org/10.5402/2012/385415
Research Article

Investigation of PCBM Concentration on the Performance of Small Organic Solar Cell

1Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71121, Egypt
2Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Received 10 April 2012; Accepted 15 July 2012

Academic Editors: F. E. Little and P. Poggi

Copyright © 2012 Yasser A. M. Ismail et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Powell, T. Bender, and Y. Lawryshyn, “A model to determine financial indicators for organic solar cells,” Solar Energy, vol. 83, no. 11, pp. 1977–1984, 2009. View at Publisher · View at Google Scholar
  2. C. Lungenschmied, G. Dennler, H. Neugebauer et al., “Flexible, long-lived, large-area, organic solar cells,” Solar Energy Materials and Solar Cells, vol. 91, no. 5, pp. 379–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Y. Chen, J. Hou, S. Zhang et al., “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nature Photonics, vol. 3, no. 11, pp. 649–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Jiang, W. F. Burgoyne Jr., and L. M. Robeson, “Sequestration of electroactive materials in a high Tg, insulating polymer matrix for optoelectronic applications. Part 2. Photovoltaic devices,” Polymer, vol. 47, no. 11, pp. 4124–4131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Hara, T. Sato, R. Katoh et al., “Molecular design of coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 107, no. 2, pp. 597–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Hara, M. Kurashige, Y. Dan-Oh et al., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, vol. 27, no. 5, pp. 783–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 80, no. 2, pp. 209–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, and O. Kurita, “Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells,” Solar Energy, vol. 81, no. 4, pp. 512–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Montali, A. R. A. Palmans, J. Bras et al., “Depolarizing energy transfer in photoluminescent polymer blends,” Synthetic Metals, vol. 115, no. 1, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Takahashi, A. Maeda, K. Kojima, and K. Uchida, “Luminescence of dyes doped in a sol-gel coating film,” Journal of Luminescence, vol. 87–89, pp. 767–769, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. F. Mansour, H. M. A. Killa, S. A. El-Wanees, and M. Y. El-Sayed, “Laser dyes doped with poly(ST-Co-MMA) as fluorescent solar collectors and their field performance,” Polymer Testing, vol. 24, no. 4, pp. 519–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. F. Mansour, “Photostability and optical parameters of copolymer styrene/MMA as a matrix for the dyes used in fluorescent solar collectors,” Polymer Testing, vol. 23, no. 3, pp. 247–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Kandavelu, H. S. Huang, J. L. Jian, T. C. K. Yang, K. L. Wang, and S. T. Huang, “Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 83, no. 4, pp. 574–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Brites, C. Santos, S. Nascimento, B. Gigante, and M. N. Berberan-Santos, “Synthesis of [60]fullerene-coumarin polyads,” Tetrahedron Letters, vol. 45, no. 37, pp. 6927–6930, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Yamanari, T. Taima, J. Sakai, and K. Saito, “Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 759–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. C. Wu, J. C. Sturm, R. A. Register, J. Tian, E. P. Dana, and M. E. Thompson, “Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities,” IEEE Transactions on Electron Devices, vol. 44, no. 8, pp. 1269–1281, 1997. View at Google Scholar · View at Scopus
  17. J. Nakamura, K. Murata, and K. Takahashi, “Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives,” Applied Physics Letters, vol. 87, no. 13, Article ID 132105, 3 pages, 2005. View at Publisher · View at Google Scholar
  18. A. A. Bakulin, S. G. Elizarov, A. N. Khodarev et al., “Weak charge-transfer complexes based on conjugated polymers for plastic solar cells,” Synthetic Metals, vol. 147, no. 1–3, pp. 221–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Goris, K. Haenen, M. Nesládek et al., “Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy,” Journal of Materials Science, vol. 40, no. 6, pp. 1413–1418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Bakulin, D. S. Martyanov, D. Y. Paraschuk, M. S. Pshenichnikov, and P. H. M. van Loosdrecht, “Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers,” Journal of Physical Chemistry B, vol. 112, no. 44, pp. 13730–13737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. K. J. van Duren, X. Yang, J. Loos et al., “Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance,” Advanced Functional Materials, vol. 14, no. 5, pp. 425–434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Saricifti, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Applied Physics Letters, vol. 80, no. 7, article 1288, 3 pages, 2002. View at Publisher · View at Google Scholar
  23. F. Padinger, R. S. Rittberger, and N. S. Saricifti, “Effects of postproduction treatment on plastic solar cells,” Advanced Functional Materials, vol. 13, no. 1, pp. 85–88, 2003. View at Publisher · View at Google Scholar
  24. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters, vol. 78, no. 6, pp. 841–843, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Kroon, M. M. Wienk, W. J. H. Verhees, and J. C. Hummelen, “Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells,” Thin Solid Films, vol. 403-404, pp. 223–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Munters, T. Martens, L. Goris et al., “A comparison between state-of-the-art “gilch” and “sulphinyl” synthesised MDMO-PPV/PCBM bulk hetero-junction solar cells,” Thin Solid Films, vol. 403-404, pp. 247–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Aernouts, W. Geens, J. Poortmans, P. Heremans, S. Borghs, and R. Mertens, “Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions,” Thin Solid Films, vol. 403-404, pp. 297–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Aernouts, P. Vanlaeke, W. Geens et al., “The influence of the donor/acceptor ratio on the performance of organic bulk heterojunction solar cells,” in Proceedings of the E-MRS Spring Meeting, Strasbourg, France, 2003.
  29. W. Geens, S. E. Shaheen, C. J. Brabec, J. Poortmans, and N. S. Sariciftci, “Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends,” in 14th International Winterschool/Euroconference, vol. 544 of AIP Conference Proceedings, pp. 516–520, Kirchberg, Austria, 2000. View at Publisher · View at Google Scholar
  30. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” Journal of Materials Research, vol. 19, no. 7, pp. 1924–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Hoppe and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells,” Journal of Materials Chemistry, vol. 16, no. 1, pp. 45–61, 2006. View at Publisher · View at Google Scholar
  32. N. M. Kronenberg, M. Deppisch, F. Würthner, H. W. A. Lademann, K. Deing, and K. Meerholz, “Bulk heterojunction organic solar cells based on merocyanine colorants,” Chemical Communications, no. 48, pp. 6489–6491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Schilinsky, C. Waldauf, J. Hauch, and C. J. Brabec, “Simulation of light intensity dependent current characteristics of polymer solar cells,” Journal of Applied Physics, vol. 95, no. 5, pp. 2816–2819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom et al., “Electron transport in a methanofullerene,” Advanced Functional Materials, vol. 13, no. 1, pp. 43–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Geens, T. Martens, J. Poortmans et al., “Modelling the short-circuit current of polymer bulk heterojunction solar cells,” Thin Solid Films, vol. 451-452, pp. 498–502, 2004. View at Publisher · View at Google Scholar · View at Scopus