Table of Contents
ISRN Mathematical Analysis
Volume 2012 (2012), Article ID 387053, 20 pages
http://dx.doi.org/10.5402/2012/387053
Research Article

On Locally Uniformly Differentiable Functions on a Complete Non-Archimedean Ordered Field Extension of the Real Numbers

1Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
2Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Received 20 December 2011; Accepted 24 January 2012

Academic Editors: J.-F. Colombeau and G. Mantica

Copyright © 2012 Khodr Shamseddine and Todd Sierens. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Berz, “Calculus and numerics on Levi-Civita fields,” in Computational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, Eds., pp. 19–35, SIAM, Philadelphia, Pa, USA, 1996. View at Google Scholar · View at Zentralblatt MATH
  2. H. Hahn, “Über die nichtarchimedischen Großensysteme,” Sitzungsbericht der Wiener Akademie der Wissenschaften Abt, vol. 2a, no. 117, pp. 601–655, 1907. View at Google Scholar
  3. S. MacLane, “The universality of formal power series fields,” Bulletin of the American Mathematical Society, vol. 45, pp. 888–890, 1939. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. F. J. Rayner, “Algebraically closed fields analogous to fields of Puiseux series,” Journal of the London Mathematical Society, vol. 8, pp. 504–506, 1974. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. P. Ribenboim, “Fields: algebraically closed and others,” Manuscripta Mathematica, vol. 75, no. 2, pp. 115–150, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. W. Krull, “Allgemeine bewertungstheorie,” Journal für die Reine und Angewandte Mathematik, vol. 167, pp. 160–196, 1932. View at Google Scholar · View at Zentralblatt MATH
  7. S. Priess-Crampe, Angeordnete Strukturen: Gruppen, Korper, Projektive Ebenen, Springer, Berlin, Germany, 1983.
  8. T. Levi-Civita, “Sugli infiniti ed infinitesimi attuali quali elementi analitici,” Atti dell'Istituto Veneto di Scienze, Lettere ed Arti, vol. 7a, no. 4, p. 1765, 1892. View at Google Scholar
  9. T. Levi-Civita, “Sui numeri transfiniti,” Rendiconti Accademia Nazionale dei Lincei, vol. 5a, no. 7, pp. 91–113, 1898. View at Google Scholar
  10. K. Shamseddine and M. Berz, “Exception handling in derivative computation with non-archimedean calculus,” in Computational Differentiation: Techniques, Applications, and Tools, pp. 37–51, SIAM, Philadelphia, Pa, USA, 1996. View at Google Scholar
  11. K. Shamseddine, New elements of analysis on the levi-civita field, Ph.D. thesis, Michigan State University, East Lansing, Mich, USA, 1999, also Michigan State University report MSUCL-1147.
  12. K. Shamseddine and M. Berz, “Analysis on the Levi-Civita field, a brief overview,” Contemporary Mathematics, vol. 508, pp. 215–237, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis, vol. 4, Cambridge University Press, Cambridge, UK, 2006.
  14. K. Shamseddine, T. Rempel, and T. Sierens, “The implicit function theorem in a non-Archimedean setting,” Indagationes Mathematicae, vol. 20, no. 4, pp. 603–617, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. K. R. Davidson and A. P. Donsig, Real Analysis with Real Applications, Prentice Hall, 2002.
  16. W. Fleming, Functions of Several Variables, Springer, New York, NY, USA, 1977.
  17. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, NY, USA, 1987.
  18. J. B. Conway, A Course in Functional Analysis, vol. 96, Springer, New York, NY, USA, 2nd edition, 1990.