Table of Contents
ISRN Physical Chemistry
Volume 2012, Article ID 391897, 5 pages
http://dx.doi.org/10.5402/2012/391897
Research Article

Docking Applied to the Study of Inhibitors of c-Met Kinase

Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina

Received 8 September 2011; Accepted 22 September 2011

Academic Editors: B.-T. Liu and A. Liwo

Copyright © 2012 Luciana Gavernet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Rong, S. Chow, S. Yan, G. Larson, Z. Hong, and J. Wu, “Structure—activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 17, no. 6, pp. 1663–1666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Li, H. Wu, D. Cui, D. Xiang, L. Bai, and H. Yang, “Unsaturated carboxylates and the use as herbicidide,” WO Patent 125,337, November, 2006.
  3. A. Burguete, E. Pontiki, D. Hadjipavlou-Litina et al., “Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues,” Bioorganic & Medicinal Chemistry Letters, vol. 17, no. 23, pp. 6439–6443, 2007. View at Publisher · View at Google Scholar
  4. A. Talevi, L. Gavernet, G. Serra, and L. E. Bruno Blanch, “Theoretic studies on quinoxaline and quinoxaline derivatives antineoplastic compounds,” in QSAR Studies and Electronic Structure Methods Assisting the Design of Quinoxaline Drugs, Nova Science, 2010. View at Google Scholar
  5. P. Corona, M. Loriga, M. P. Costi, S. Ferrari, and G. Paglietti, “Synthesis of N-(5,7-diamino-3-phenyl-quinoxalin-2-yl)-3,4,5-substituted anilines and N-[4[(5,7-diamino-3-phenylquinoxalin-2-yl)amino]benzoyl]-l -glutamic acid diethyl ester: evaluation of in vitro anti-cancer and anti-folate activities,” European Journal of Medicinal Chemistry, vol. 43, no. 1, pp. 189–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Porter, S. Lumb, F. Lecomte et al., “Discovery of a novel series of quinoxalines as inhibitors of c-Met kinase,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 2, pp. 397–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000, www.pdb.org. View at Google Scholar · View at Scopus
  8. G. M. Morris, D. S. Goodsell, R. S. Halliday et al., “Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, no. 14, pp. 1639–1662, 1998. View at Google Scholar · View at Scopus
  9. D. A. Case, T. A. Darden, I. T. E. Cheatham et al., AMBER 10, University of California, San Francisco, Calif, USA, 2008.
  10. R. Huey, D. S. Goodsell, G. M. Morris, and A. J. Olson, “Grid-based hydrogen bond potentials with improved directionality,” Letters in Drug Design and Discovery, vol. 1, no. 2, pp. 178–183, 2004. View at Google Scholar
  11. R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, “A semiempirical free energy force field with charge-based desolvation,” Journal of Computational Chemistry, vol. 28, no. 6, pp. 1145–1152, 2007. View at Publisher · View at Google Scholar · View at Scopus