Table of Contents
ISRN Cell Biology
Volume 2012, Article ID 403835, 16 pages
http://dx.doi.org/10.5402/2012/403835
Review Article

Molecular Mechanisms of Cytotoxicity and Apoptosis Induced by Inorganic Fluoride

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia

Received 28 November 2011; Accepted 21 December 2011

Academic Editors: Z. Pan and R. Poon

Copyright © 2012 Natalia Ivanovna Agalakova and Gennadii Petrovich Gusev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Fuge, “Sources of halogens in the environment, influences on human and animal health,” Environmental Geochemistry and Health, vol. 10, no. 2, pp. 51–61, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. R. B. Symonds, W. I. Rose, and M. H. Reed, “Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes,” Nature, vol. 334, no. 6181, pp. 415–418, 1988. View at Google Scholar · View at Scopus
  3. WHO (World Health Organization), K. Bailey, J. Chilton et al., Eds., Fluoride in Drinking Water, WHO Press, Geneva, Switzerland, 2006.
  4. Environmental Health Criteria (EHC) 227, Fluorides, World Health Organization, Geneva, Switzerland, 2002.
  5. F. M. Fordyce, K. Vrana, E. Zhovinsky et al., “A health risk assessment for fluoride in Central Europe,” Environmental Geochemistry and Health, vol. 29, no. 2, pp. 83–102, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. H. Wong, K. F. Fung, and H. P. Carr, “Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications,” Toxicology Letters, vol. 137, no. 1-2, pp. 111–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Pizzo, M. R. Piscopo, I. Pizzo, and G. Giuliana, “Community water fluoridation and caries prevention: a critical review,” Clinical Oral Investigations, vol. 11, no. 3, pp. 189–193, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. V. Dhar and M. Bhatnagar, “Physiology and toxicity of fluoride,” Indian Journal of Dental Research, vol. 20, no. 3, pp. 350–355, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Aoba and O. Fejerskov, “Dental fluorosis: chemistry and biology,” Critical Reviews in Oral Biology and Medicine, vol. 13, no. 2, pp. 155–170, 2002. View at Google Scholar · View at Scopus
  10. Q. Q. Tang, J. Du, H. H. Ma, S. J. Jiang, and X. J. Zhou, “Fluoride and children's intelligence: a meta-analysis,” Biological Trace Element Research, vol. 126, no. 1–3, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. L. J. J. Bronckers, D. M. Lyaruu, and P. K. Denbesten, “The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis,” Journal of Dental Research, vol. 88, pp. 877–893, 2009. View at Google Scholar
  12. D. Raja Reddy, “Neurology of endemic skeletal fluorosis,” Neurology India, vol. 57, no. 1, pp. 7–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. A. V. R. Krishnamachari, “Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease,” Progress in Food and Nutrition Science, vol. 10, no. 3-4, pp. 279–314, 1986. View at Google Scholar · View at Scopus
  14. G. M. Whitford, “Intake and metabolism of fluoride,” Advances in Dental Research, vol. 8, no. 1, pp. 5–14, 1994. View at Google Scholar · View at Scopus
  15. J. Gutknecht and A. Walter, “Hydrofluoric and nitric acid transport through lipid bilayer membranes,” Biochimica et Biophysica Acta, vol. 644, no. 1, pp. 153–156, 1981. View at Google Scholar · View at Scopus
  16. R. C. Baselt, Disposition of Toxic Drugs and Chemicals in Man, Biomedical Publications, Foster City, Calif, USA, 7th edition, 2004.
  17. O. Barbier, L. Arreola-Mendoza, and L. M. Del Razo, “Molecular mechanisms of fluoride toxicity,” Chemico-Biological Interactions, vol. 188, no. 2, pp. 319–333, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Kubota, D. H. Lee, M. Tsuchiya et al., “Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation,” The Journal of Biological Chemistry, vol. 280, no. 24, pp. 23194–23202, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Q. Yan, Y. Zhang, W. Li, and P. K. DenBesten, “Micromolar fluoride alters ameloblast lineage cells in vitro,” Journal of Dental Research, vol. 86, no. 4, pp. 336–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. F. Jacinto-Alemán, J. C. Hernández-Guerrero, C. Trejo-Solís, M. D. Jiménez-Farfán, and A. M. Fernández-Presas, “In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis,” Journal of Oral Pathology and Medicine, vol. 39, no. 9, pp. 709–714, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. H. Karube, G. Nishitai, K. Inageda, H. Kurosu, and M. Matsuoka, “NaF activates MAPKs and induces apoptosis in odontoblast-like cells,” Journal of Dental Research, vol. 88, no. 5, pp. 461–465, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. W. J. Qu, D. B. Zhong, P. F. Wu, J. F. Wang, and B. Han, “Sodium fluoride modulates caprine osteoblast proliferation and differentiation,” Journal of Bone and Mineral Metabolism, vol. 26, no. 4, pp. 328–334, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. X. Yan, C. Feng, Q. Chen et al., “Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts,” Archives of Toxicology, vol. 83, no. 5, pp. 451–458, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. Yang, Z. Wang, C. Farquharson et al., “Sodium fluoride induces apoptosis and alters bcl-2 family protein expression in MC3T3-E1 osteoblastic cells,” Biochemical and Biophysical Research Communications, vol. 410, no. 4, pp. 910–915, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. E. V. Thrane, M. Refsnes, G. H. Thoresen, M. Låg, and P. E. Schwarze, “Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK,” Toxicological Sciences, vol. 61, no. 1, pp. 83–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Refsnes, P. E. Schwarze, J. A. Holme, and M. Låg, “Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems,” Human and Experimental Toxicology, vol. 22, no. 3, pp. 111–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Xu, X. Q. Jin, L. Jing, and G. S. Li, “Effect of sodium fluoride on the expression of Bcl-2 family and osteopontin in rat renal tubular cells,” Biological Trace Element Research, vol. 109, no. 1, pp. 55–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Bai, T. Chen, Y. Cui, T. Gong, X. Peng, and H. M. Cui, “Effect of high fluorine on the cell cycle and apoptosis of renal cells in chickens,” Biological Trace Element Research, vol. 138, no. 1–3, pp. 173–180, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. G. Wang, T. Xia, Q. L. Chu et al., “Effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocytes,” Biomedical and Environmental Sciences, vol. 17, no. 2, pp. 217–222, 2004. View at Google Scholar · View at Scopus
  30. X. A. Zhan, M. Wang, Z. R. Xu, W. F. Li, and J. X. Li, “Evaluation of caspase-dependent apoptosis during fluoride-induced liver lesion in pigs,” Archives of Toxicology, vol. 80, no. 2, pp. 74–80, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. L. F. He and J. G. Chen, “DNA damage, apoptosis and cell cycle changes induced by fluoride in rat oral mucosal cells and hepatocytes,” World Journal of Gastroenterology, vol. 12, no. 7, pp. 1144–1148, 2006. View at Google Scholar · View at Scopus
  32. Y. Ge, H. Ning, C. Feng et al., “Apoptosis in brain cells of offspring rats exposed to high fluoride and low iodine,” Fluoride, vol. 39, no. 3, pp. 173–178, 2006. View at Google Scholar · View at Scopus
  33. M. Zhang, A. Wang, T. Xia, and P. He, “Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-κB in primary cultured rat hippocampal neurons,” Toxicology Letters, vol. 179, no. 1, pp. 1–5, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. Y.-J. Liu, Z.-Z. Guan, Q. Gao, and J.-J. Pei, “Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride—a mechanism connected with activating JNK phosphorylation,” Toxicology Letters, vol. 204, no. 2-3, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. A. C. Loweth, G. T. Williams, J. H. B. Scarpello, and N. G. Morgan, “Heterotrimeric G-proteins are implicated in the regulation of apoptosis in pancreatic β-cells,” Experimental Cell Research, vol. 229, no. 1, pp. 69–76, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. Elliott, J. H. B. Scarpello, and N. G. Morgan, “Effects of tyrosine kinase inhibitors on cell death induced by sodium fluoride and pertussis toxin in the pancreatic β-cell line, RINm5F,” British Journal of Pharmacology, vol. 132, no. 1, pp. 119–126, 2001. View at Google Scholar · View at Scopus
  37. H. Wang, B. Zhou, J. Cao, X. Gu, C. Cao, and J. Wang, “Effects of dietary protein and calcium on thymus apoptosis induced by fluoride in female rats (wistar rats),” Environmental Toxicology, vol. 24, no. 3, pp. 218–224, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Guney, B. Oral, G. Take, S. G. Giray, and T. Mungan, “Effect of fluoride intoxication on endometrial apoptosis and lipid peroxidation in rats: role of vitamins E and C,” Toxicology, vol. 231, no. 2-3, pp. 215–223, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Guney, B. Oral, H. Demirin, N. Karahan, T. Mungan, and N. Delibas, “Protective effects of vitamins C and E against endometrial damage and oxidative stress in fluoride intoxication,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 5-6, pp. 467–474, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. Machalinska, A. Machoy-Mokrzynska, W. Marlicz, I. Stecewicz, and B. Machalinski, “NaF- induced apoptosis in human bone marrow and cord blood CD34 positive cells,” Fluoride, vol. 34, no. 4, pp. 258–263, 2001. View at Google Scholar · View at Scopus
  41. Z. H. Wang, X. L. Li, Z. Q. Yang, and M. Xu, “Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro,” Biological Trace Element Research, vol. 137, no. 3, pp. 280–288, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Chouhan and S. J. S. Flora, “Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data,” Toxicology, vol. 254, no. 1-2, pp. 61–67, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. Chouhan, V. Lomash, and S. J. S. Flora, “Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats,” Journal of Applied Toxicology, vol. 30, no. 1, pp. 63–73, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. N. I. Agalakova and G. P. Gusev, “Fluoride-induced death of rat erythrocytes in vitro,” Toxicology in Vitro, vol. 25, no. 8, pp. 1609–1618, 2011. View at Publisher · View at Google Scholar · View at PubMed
  45. C. D. Anuradha, S. Kanno, and S. Hirano, “Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells,” Free Radical Biology and Medicine, vol. 31, no. 3, pp. 367–373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. S. Song, H. Y. Lee, E. Lee, H. J. Hwang, and J. H. Kim, “Cytotoxicity and apoptosis induction of sodium fluoride in human promyelocytic leukemia (HL-60) cells,” Environmental Toxicology and Pharmacology, vol. 11, no. 2, pp. 85–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Otsuki, S. R. M. Morshed, S. A. Chowdhury et al., “Possible link between glycolysis and apoptosis induced by sodium fluoride,” Journal of Dental Research, vol. 84, no. 10, pp. 919–923, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Wyllie, “"where, o death, is thy sting?" A brief review of apoptosis biology,” Molecular Neurobiology, vol. 42, no. 1, pp. 4–9, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. S. Ola, M. Nawaz, and H. Ahsan, “Role of Bcl-2 family proteins and caspases in the regulation of apoptosis,” Molecular and Cellular Biochemistry, vol. 351, pp. 41–58, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. E. F. Mason and J. C. Rathmell, “Cell metabolism: an essential link between cell growth and apoptosis,” Biochimica et Biophysica Acta, vol. 1813, no. 4, pp. 645–654, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. Li, “The biochemistry and physiology of metallic fluoride: action, mechanism, and implications,” Critical Reviews in Oral Biology and Medicine, vol. 14, no. 2, pp. 100–114, 2003. View at Google Scholar · View at Scopus
  52. P. C. Sternweis and A. G. Gilman, “Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 16 I, pp. 4888–4891, 1982. View at Google Scholar · View at Scopus
  53. J. Bigay, P. Deterre, C. Pfister, and M. Chabre, “Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the gamma phosphate of GTP,” The EMBO Journal, vol. 6, no. 10, pp. 2907–2913, 1987. View at Google Scholar · View at Scopus
  54. T. Higashijima, K. M. Ferguson, P. C. Sternweis, E. M. Ross, M. D. Smigel, and A. G. Gilman, “The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins,” The Journal of Biological Chemistry, vol. 262, no. 2, pp. 752–756, 1987. View at Google Scholar
  55. R. Mittal, M. R. Ahmadian, R. S. Goody, and A. Wittinghofer, “Formation of a transition-state analog of the Ras GTPase reaction by Ras·Gdp, tetrafluoroaluminate, and GTPase-activating proteins,” Science, vol. 273, no. 5271, pp. 115–117, 1996. View at Google Scholar · View at Scopus
  56. A. Wittinghofer, “Signal transduction via Ras,” Biological Chemistry, vol. 379, no. 8-9, pp. 933–937, 1998. View at Google Scholar · View at Scopus
  57. P. F. Blackmore, S. B. Bocckino, L. E. Waynick, and J. H. Exton, “Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium,” The Journal of Biological Chemistry, vol. 260, no. 27, pp. 14477–14483, 1985. View at Google Scholar
  58. J. Elliott, J. H. B. Scarpello, and N. G. Morgan, “Differential effects of genistein on apoptosis induced by fluoride and pertussis toxin in human and rat pancreatic islets and RINm5F cells,” Journal of Endocrinology, vol. 172, no. 1, pp. 137–143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. J. H. Dominguez, J. G.N. Garcia, J. K. Rothrock, D. English, and C. Mann, “Fluoride mobilizes intracellular calcium and promotes Ca2+ influx in rat proximal tubules,” American Journal of Physiology, vol. 261, no. 2, pp. F318–F327, 1991. View at Google Scholar
  60. J. G. Garcia, J. Dominguez, and D. English, “Sodium fluoride induces phosphoinositide hydrolysis, Ca2+ mobilization, and prostacyclin synthesis in cultured human endothelium: further evidence for regulation by a pertussis toxin-insensitive guanine nucleotide-binding protein,” American Journal of Respiratory Cell and Molecular Biology, vol. 5, no. 2, pp. 113–124, 1991. View at Google Scholar · View at Scopus
  61. M. Šuša, G. J. R. Standke, M. Jeschke, and D. Rohner, “Fluoroaluminate induces pertussis toxin-sensitive protein phosphorylation: differences in MC3T3-E1 osteoblastic and NIH3T3 fibroblastic cells,” Biochemical and Biophysical Research Communications, vol. 235, no. 3, pp. 680–684, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Susa, “Heterotrimeric G proteins as fluoride targets in bone (review),” International Journal of Molecular Medicine, vol. 3, no. 2, pp. 115–126, 1999. View at Google Scholar · View at Scopus
  63. P. Wang, A. D. Verin, A. Birukova, L. I. Gilbert-McClain, K. Jacobs, and J. G. N. Garcia, “Mechanisms of sodium fluoride-induced endothelial cell barrier dysfunction: role of MLC phosphorylation,” American Journal of Physiology, vol. 281, no. 6, pp. L1472–L1483, 2001. View at Google Scholar · View at Scopus
  64. N. V. Bogatcheva, P. Wang, A. A. Birukova, A. D. Verin, and J. G. N. Garcia, “Mechanism of fluoride-induced MAP kinase activation in pulmonary artery endothelial cells,” American Journal of Physiology, vol. 290, no. 6, pp. L1139–L1145, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. Refsnes, H. Kersten, P. E. Schwarze, and M. Låg, “Involvement of protein kinase C in fluoride-induced apoptosis in different types of lung cells,” Annals of the New York Academy of Sciences, vol. 973, pp. 218–220, 2002. View at Google Scholar · View at Scopus
  66. J. G. Garcia, J. Stasek, V. Natarajan, C. E. Patterson, and J. Dominguez, “Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 6, no. 3, pp. 315–325, 1992. View at Google Scholar · View at Scopus
  67. M. E. Reyland and A. P. Bradford, “PKC and the control of apoptosis, Protein kinase C in cancer signaling and therapy,” in Current Cancer Research, M. G. Kazanietz, Ed., vol. 2, pp. 189–222, 2010. View at Google Scholar
  68. G. E. N. Kass and S. Orrenius, “Calcium signaling and cytotoxicity,” Environmental Health Perspectives, vol. 107, no. 1, pp. 25–35, 1999. View at Google Scholar · View at Scopus
  69. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 11–21, 2000. View at Google Scholar · View at Scopus
  70. C. C. Cummings and M. E. McIvor, “Fluoride-induced hyperkalemia: the role of Ca2+-dependent K+ channels,” American Journal of Emergency Medicine, vol. 6, no. 1, pp. 1–3, 1988. View at Google Scholar · View at Scopus
  71. J. E. Zerwekh, A. C. Morris, P. K. Padalino, F. Gottschalk, and C. Y. C. Pak, “Fluoride rapidly and transiently raises intracellular calcium in human osteoblasts,” Journal of Bone and Mineral Research, vol. 5, no. 1, pp. S131–S136, 1990. View at Google Scholar · View at Scopus
  72. Z. Xu, B. Xu, T. Xia et al., “Relationship between intracellular Ca2+ and ROS during fluoride-induced injury in SH-SY5Y cells,” Environmental Toxicology. In press. View at Publisher · View at Google Scholar · View at PubMed
  73. H. Murao, N. Sakagami, T. Iguchi, T. Murakami, and Y. Suketa, “Sodium fluoride increases intracellular calcium in rat renal epithelial cell line NRK-52E,” Biological and Pharmaceutical Bulletin, vol. 23, no. 5, pp. 581–584, 2000. View at Google Scholar · View at Scopus
  74. A. Kagaya, Y. Uchitomi, A. Kugaya et al., “Differential regulation of intracellular signaling systems by sodium fluoride in rat glioma cells,” Journal of Neurochemistry, vol. 66, no. 4, pp. 1483–1488, 1996. View at Google Scholar · View at Scopus
  75. H. Matsui, M. Morimoto, K. Horimoto, and Y. Nishimura, “Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride,” Toxicology in Vitro, vol. 21, no. 6, pp. 1113–1120, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. H. Xu, Y. L. Zhou, J. M. Zhang, H. Liu, L. Jing, and G. S. Li, “Effects of fluoride on the intracellular free Ca2+ and Ca2+-ATPase of kidney,” Biological Trace Element Research, vol. 116, no. 3, pp. 279–287, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. Z. Sun, R. Niu, K. Su et al., “Effects of sodium fluoride on hyperactivation and Ca2+ signaling pathway in sperm from mice: an in vivo study,” Archives of Toxicology, vol. 84, no. 5, pp. 353–361, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Los, S. Maddika, B. Erb, and K. Schulze-Osthoff, “Switching Akt: from survival signaling to deadly response,” BioEssays, vol. 35, pp. 492–495, 2009. View at Google Scholar
  79. N. Wettschureck and S. Offermanns, “Rho/Rho-kinase mediated signaling in physiology and pathophysiology,” Journal of Molecular Medicine, vol. 80, no. 10, pp. 629–638, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. Yang, S. B. Jeon, I. Baek, M. J. Song, Y. R. Yoon, and I. K. Kim, “Fluoride induces vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aortas,” Environmental Toxicology and Pharmacology, vol. 29, no. 3, pp. 290–296, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. M. A. Lemmon and J. Schlessinger, “Cell signaling by receptor tyrosine kinases,” Cell, vol. 141, no. 7, pp. 1117–1134, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. F. Vinals, X. Testar, M. Palacin, and A. Zorzano, “Inhibitory effect of fluoride on insulin receptor autophosphorylation and tyrosine kinase activity,” Biochemical Journal, vol. 291, no. 2, pp. 615–622, 1993. View at Google Scholar · View at Scopus
  83. A. Plotnikov, E. Zehorai, S. Procaccia, and R. Seger, “The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation,” Biochimica et Biophysica Acta, vol. 1813, pp. 1619–1633, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. L. W. Wu, H. K. Yoon, D. J. Baylink, L. M. Graves, and K. H. W. Lau, “Fluoride at mitogenic doses induces a sustained activation of p44(mapk), but not p42(mapk), in human TE85 osteosarcoma cells,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 4, pp. 1126–1135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Zhang, W. Li, H. S. Chi, J. Chen, and P. K. DenBesten, “JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro,” Matrix Biology, vol. 26, no. 8, pp. 633–641, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. Q. Chen, Z. Wang, Y. Xiong, X. Zou, and Z. Liu, “Comparative study of p38 MAPK signal transduction pathway of peripheral blood mononuclear cells from patients with coal-combustion-type fluorosis with and without high hair selenium levels,” International Journal of Hygiene and Environmental Health, vol. 213, no. 5, pp. 381–386, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. G. Gloire, E. Charlier, and J. Piette, “Regulation of CD95/APO-1/Fas-induced apoptosis by protein phosphatases,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1451–1458, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. R. Junttila, S. P. Li, and J. Westermarck, “Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival,” The FASEB Journal, vol. 22, no. 4, pp. 954–965, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. E. Shacter-Noiman and P. B. Chock, “Properties of a Mr = 38,000 phosphoprotein phosphatase. Modulation by divalent cations, ATP, and fluoride,” The Journal of Biological Chemistry, vol. 258, no. 7, pp. 4214–4219, 1983. View at Google Scholar · View at Scopus
  90. R. Franco, C. D. Bortner, and J. A. Cidlowski, “Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis,” Journal of Membrane Biology, vol. 209, no. 1, pp. 43–58, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. T. I. Ivanova, N. I. Agalakova, and G. P. Gusev, “Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A,” Comparative Biochemistry and Physiology B, vol. 145, no. 1, pp. 60–67, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. N. I. Agalakova and G. P. Gusev, “Diverse effects of fluoride on Na+ and K+ transport across the rat erythrocyte membrane,” Fluoride, vol. 41, pp. 28–39, 2008. View at Google Scholar
  93. C. Lytle, “Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites,” The Journal of Biological Chemistry, vol. 272, no. 24, pp. 15069–15077, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. G. P. Gusev and N. I. Agalakova, “Regulation of K-Cl cotransport in erythrocytes of frog Rana temporaria by commonly used protein kinase and protein phosphatase inhibitors,” Journal of Comparative Physiology B, vol. 180, no. 3, pp. 385–391, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. R. Franco and J. A. Cidlowski, “Apoptosis and glutathione: beyond an antioxidant,” Cell Death and Differentiation, vol. 16, no. 10, pp. 1303–1314, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. D. Chlubek, “Fluoride and oxidative stress,” Fluoride, vol. 36, no. 4, pp. 217–228, 2003. View at Google Scholar · View at Scopus
  97. G. B. Reddy, A. L. Khandare, P. Y. Reddy, G. S. Rao, N. Balakrishna, and I. Srivalli, “Antioxidant defense system and lipid peroxidation in patients with skeletal fluorosis and in fluoride-intoxicated rabbits,” Toxicological Sciences, vol. 72, no. 2, pp. 363–368, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. J. H. Lee, J. Y. Jung, Y. J. Jeong et al., “Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts,” Toxicology, vol. 243, no. 3, pp. 340–347, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. J. A. Izquierdo-Vega, M. Sánchez-Gutiérrez, and L. M. Del Razo, “Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss,” Toxicology and Applied Pharmacology, vol. 230, no. 3, pp. 352–357, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. J. A. Izquierdo-Vega, M. Sánchez-Gutiérrez, and L. M. del Razo, “NADPH oxidase participates in the oxidative damage caused by fluoride in rat spermatozoa. Protective role of α-tocopherol,” Journal of Applied Toxicology, vol. 31, no. 6, pp. 579–588, 2011. View at Publisher · View at Google Scholar · View at PubMed
  101. E. A. García-Montalvo, H. Reyes-Pérez, and L. M. Del Razo, “Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress,” Toxicology, vol. 263, no. 2-3, pp. 75–83, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. Y. Y. Wang, B. L. Zhao, X. J. Li, Z. Su, and W. J. Xi, “Spin trapping technique studies on active oxygen radicals from human polymorphonuclear leukocytes during fluoride-stimulated respiratory burst,” Fluoride, vol. 30, no. 1, pp. 5–15, 1997. View at Google Scholar · View at Scopus
  103. I. Gutowska, I. Baranowska-Bosiacka, M. Baśkiewicz et al., “Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human THP1 monocytic cells,” Toxicology Letters, vol. 196, no. 2, pp. 74–79, 2010. View at Publisher · View at Google Scholar · View at PubMed
  104. J. Ghosh, J. Das, P. Manna, and P. C. Sil, “Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway,” Toxicology in Vitro, vol. 22, no. 8, pp. 1918–1926, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. Z. Sun, R. Niu, B. Wang et al., “Fluoride-induced apoptosis and gene expression profiling in mice sperm in vivo,” Archives of Toxicology, vol. 85, pp. 1441–1452, 2011. View at Google Scholar
  106. Y. M. Shivarajashankara, A. R. Shivashankara, B. P. Gopalakrishna, and S. H. Rao, “Oxidative stress in children with endemic skeletal fluorosis,” Fluoride, vol. 34, pp. 108–113, 2001. View at Google Scholar
  107. P. Kalyanalakshmi, M. Vijayabhaskar, and M. Dhananjaya Naidu, “Lipid peroxidation and antioxidant enzyme status of adult males with skeletal fluorosis in Andhra Pradesh, India,” Fluoride, vol. 40, no. 1, pp. 42–45, 2007. View at Google Scholar · View at Scopus
  108. Y. M. Shivarajashankara, A. R. Shivashankara, P. Gopalakrishna Bhat, and S. Hanumanth Rao, “Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats,” Fluoride, vol. 34, no. 2, pp. 108–113, 2001. View at Google Scholar · View at Scopus
  109. Y. M. Shivarajashankara, A. R. Shivashankara, P. Gopalakrishna Bhat, and S. Hanumanth Rao, “Lipid peroxidation and antioxidant systems in the blood of young rats subjected to chronic fluoride toxicity,” Indian Journal of Experimental Biology, vol. 41, no. 8, pp. 857–860, 2003. View at Google Scholar · View at Scopus
  110. I. Inkielewicz and J. Krechniak, “Fluoride effects on glutathione peroxidase and lipid peroxidation in rats,” Fluoride, vol. 37, no. 1, pp. 7–12, 2004. View at Google Scholar · View at Scopus
  111. I. Błaszczyk, E. Grucka-Mamczar, S. Kasperczyk, and E. Birkner, “Influence of methionine upon the concentration of malondialdehyde in the tissues and blood of rats exposed to sodium fluoride,” Biological Trace Element Research, vol. 129, no. 1–3, pp. 229–238, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. E. Karaoz, M. Oncu, K. Gulle et al., “Effect of chronic fluorosis on lipid peroxidation and histology of kidney tissues in first- and second-generation rats,” Biological Trace Element Research, vol. 102, no. 1–3, pp. 199–208, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. H. Xu, C. H. Wang, Z. T. Zhao, W. B. Zhang, and G. S. Li, “Role of oxidative stress in osteoblasts exposed to sodium fluoride,” Biological Trace Element Research, vol. 123, no. 1–3, pp. 109–115, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. J. Jeji, R. Sharma, S. S. Jolly, and S. Pamnani, “Implication of glutathione in endemic fluorosis,” Fluoride, vol. 18, no. 2, pp. 117–119, 1985. View at Google Scholar · View at Scopus
  115. J. Li and S. Ca, “Recent studies on endemic fluorosis in China,” Fluoride, vol. 27, pp. 125–128, 1994. View at Google Scholar
  116. M. Sinha, P. Manna, and P. C. Sil, “A 43 kD protein from the herb, Cajanus indicus L., protects against fluoride induced oxidative stress in mice erythrocytes,” Pathophysiology, vol. 14, no. 1, pp. 47–54, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology, vol. 204, no. 2-3, pp. 219–228, 2004. View at Publisher · View at Google Scholar · View at PubMed
  118. H. A. Hassan and M. I. Yousef, “Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats,” Food and Chemical Toxicology, vol. 47, no. 9, pp. 2332–2337, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. M. L. Vani and K. P. Reddy, “Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice,” Fluoride, vol. 33, no. 1, pp. 17–26, 2000. View at Google Scholar · View at Scopus
  120. G. Liu, C. Chai, and L. Cui, “Fluoride causing abnormally elevated serum nitric oxide levels in chicks,” Environmental Toxicology and Pharmacology, vol. 13, no. 3, pp. 199–204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. J. J. Lemasters, “Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis,” Gastroenterology, vol. 129, no. 1, pp. 351–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Qin, G. Chai, J. M. Brewer, L. L. Lovelace, and L. Lebioda, “Fluoride inhibition of enolase: crystal structure and thermodynamics,” Biochemistry, vol. 45, no. 3, pp. 793–800, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. S. A. Feig, S. B. Shohet, and D. G. Nathan, “Energy metabolism in human erythrocytes. I. Effects of sodium fluoride,” Journal of Clinical Investigation, vol. 50, no. 8, pp. 1731–1737, 1971. View at Google Scholar · View at Scopus
  124. J. H. Jeng, C. C. Hsieh, W. H. Lan et al., “Cytotoxicity of sodium fluoride on human oral mucosal fibroblasts and its mechanisms,” Cell Biology and Toxicology, vol. 14, no. 6, pp. 383–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. M. L. Coleman, E. A. Sahai, M. Yeo, M. Bosch, A. Dewar, and M. F. Olson, “Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I,” Nature Cell Biology, vol. 3, no. 4, pp. 339–345, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. L. P. Wen, J. A. Fahrni, S. Troie, J. L. Guan, K. Orth, and G. D. Rosen, “Cleavage of focal adhesion kinase by caspases during apoptosis,” The Journal of Biological Chemistry, vol. 272, no. 41, pp. 26056–26061, 1997. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Nagata, “Apoptotic DNA fragmentation,” Experimental Cell Research, vol. 256, no. 1, pp. 12–18, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. R. Kim, M. Emi, and K. Tanabe, “Role of mitochondria as the gardens of cell death,” Cancer Chemotherapy and Pharmacology, vol. 57, no. 5, pp. 545–553, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. C. D. Anuradha, S. Kanno, and S. Hirano, “Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells,” Archives of Toxicology, vol. 74, no. 4-5, pp. 226–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. B. Xu, Z. Xu, T. Xia et al., “Effects of the Fas/Fas-L pathway on fluoride-induced apoptosis in SH-SY5Y cells,” Environmental Toxicology, vol. 26, no. 1, pp. 86–92, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. J. Gutiérrez-Salinas, J. A. Morales-González, E. Madrigal-Santillán et al., “Exposure to sodium fluoride produces signs of apoptosis in rat leukocytes,” International Journal of Molecular Sciences, vol. 11, no. 9, pp. 3610–3622, 2010. View at Publisher · View at Google Scholar · View at PubMed
  132. G. Ren, K. Wang, R. Chang et al., “Simultaneous administration of fluoride and selenite regulates proliferation and apoptosis in murine osteoblast-like MC3T3-E1 cells by altering osteoprotegerin,” Biological Trace Element Research, vol. 144, no. 1–3, pp. 1437–1448, 2011. View at Publisher · View at Google Scholar · View at PubMed
  133. C.-H. Chien, H. Sakagami, M. Kouhara, A. Sasaki, K. Matsumoto, and H. Kanegae, “Effect of simulated orthodontic forces on flouride-induced cytotoxicity in MC3T3-E1 osteoblast-like cells,” In Vivo, vol. 23, no. 2, pp. 259–266, 2009. View at Google Scholar
  134. A. Burlacu, “Regulation of apoptosis by Bcl-2 family proteins,” Journal of Cellular and Molecular Medicine, vol. 7, no. 3, pp. 249–257, 2003. View at Google Scholar · View at Scopus
  135. S. Otsuki, K. Sugiyama, O. Amano, T. Yasui, and H. Sakagami, “Negative regulation of NaF-induced apoptosis by Bad-CAII complex,” Toxicology, vol. 287, no. 1–3, pp. 131–136, 2011. View at Publisher · View at Google Scholar · View at PubMed
  136. C. L. Tsai, J. W. Lin, H. K. Kuo et al., “Induction of apoptosis in rabbit oral mucosa by 1.23% acidulated phosphate fluoride gel,” Archives of Toxicology, vol. 82, no. 2, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. W. Sun and J. Yang, “Functional mechanisms for human tumor suppression,” Journal of Cancer, vol. 15, pp. 136–140, 2010. View at Google Scholar
  138. O. D.K. Maddocks and K. H. Vousden, “Metabolic regulation by p53,” Journal of Molecular Medicine, vol. 89, no. 3, pp. 237–245, 2011. View at Publisher · View at Google Scholar · View at PubMed
  139. A. G. Wang, Q. L. Chu, W. H. He et al., “Effects on protein and mRNA expression levels of p53 induced by fluoride in human embryonic hepatocytes,” Toxicology Letters, vol. 158, no. 2, pp. 158–163, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. M. Salgado-Bustamante, M. D. Ortiz-Pérez, E. Calderón-Aranda et al., “Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride,” Science of the Total Environment, vol. 408, no. 4, pp. 760–767, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. J. Lu, H. Chen, Q. Xu et al., “Comparative proteomics of kidney samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis,” Toxicology Mechanisms and Methods, vol. 20, no. 6, pp. 345–354, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. J. Lu, J. Zheng, H. Liu, J. Li, Q. Xu, and K. Chen, “Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: an insight into molecular response to fluorosis,” Journal of Biochemical and Molecular Toxicology, vol. 24, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. J. Lu, Q. Xu, J. Zheng, H. Liu, J. Li, and K. Chen, “Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis,” Toxicology Mechanisms and Methods, vol. 19, no. 6-7, pp. 468–475, 2009. View at Google Scholar
  144. H. Okudo, H. Kato, Y. Arakaki, and R. Urade, “Cooperation of ER-60 and BiP in the oxidative refolding of denatured proteins in vitro,” The Journal of Biological Chemistry, vol. 138, no. 6, pp. 773–780, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. G. Giancarlo, “SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells,” Molecular Cancer, vol. 5, pp. 52–65, 2006. View at Google Scholar
  146. F. Chen and V. Castranova, “Nuclear factor-κB, an unappreciated tumor suppressor,” Cancer Research, vol. 67, no. 23, pp. 11093–11098, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. M. Fu, C. Wang, Z. Li, T. Sakamaki, and R. G. Pestell, “Minireview: cyclin D1: normal and abnormal functions,” Endocrinology, vol. 145, no. 12, pp. 5439–5447, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. M. Zhang, A. Wang, W. He et al., “Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons,” Toxicology, vol. 236, no. 3, pp. 208–216, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. C. Y. Liu and R. J. Kaufman, “The unfolded protein response,” Journal of Cell Science, vol. 116, no. 10, pp. 1861–1862, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. R. Kim, M. Emi, K. Tanabe, and S. Murakami, “Role of the unfolded protein response in cell death,” Apoptosis, vol. 11, no. 1, pp. 5–13, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. R. Sharma, M. Tsuchiya, and J. D. Bartlett, “Flouride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion,” Environmental Health Perspectives, vol. 116, no. 9, pp. 1142–1146, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  152. R. Sharma, M. Tsuchiya, Z. Skobe, B. A. Tannous, and J. D. Bartlett, “The acid test of fluoride: how pH modulates toxicity,” PloS One, vol. 5, no. 5, Article ID e10895, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  153. S. Jin, T. Tong, W. Fan et al., “GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity,” Oncogene, vol. 21, no. 57, pp. 8696–8704, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. M. Ito, H. Nakagawa, T. Okada, S. Miyazaki, and S. Matsuo, “ER-stress caused by accumulated intracistanal granules activates autophagy through a different signal pathway from unfolded protein response in exocrine pancreas cells of rats exposed to fluoride,” Archives of Toxicology, vol. 83, no. 2, pp. 151–159, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus