Table of Contents
ISRN Condensed Matter Physics
Volume 2012 (2012), Article ID 410326, 5 pages
http://dx.doi.org/10.5402/2012/410326
Research Article

A First Principle Calculation of Full-Heusler Alloy Co2TiAl: LSDA+𝑈 Method

Department of Physics, Mizoram University, Aizawl 796004, India

Received 17 May 2012; Accepted 19 June 2012

Academic Editors: I. Galanakis, A. N. Kocharian, Y. Ohta, and A. D. Zaikin

Copyright © 2012 D. P. Rai and R. K. Thapa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, “New class of materials: half-metallic ferromagnets,” Physical Review Letters, vol. 50, no. 25, pp. 2024–2027, 1983. View at Publisher · View at Google Scholar · View at Scopus
  2. H. C. Kandpal, Computational studies on the structure and stabilities of magnetic inter-metallic compounds,dissertation zur Erlanggung des Grades [Doktor der Naturwissenschaften], am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Guttenberg-Universitat Mainz, 2006.
  3. I. Zutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Reviews of Modern Physics, vol. 76, pp. 323–410, 2004. View at Publisher · View at Google Scholar
  4. J. de Boeck, W. Van Roy, J. Das et al., “Technology and materials issues in semiconductor-based magnetoelectronics,” Semiconductor Science and Technology, vol. 17, no. 4, pp. 342–354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. P. Rai, J. Hashemifar, M. Jamal et al., “Study of Co2MnAl Heusler alloy as half metallic ferromagnet,” Indian Journal of Physics, vol. 84, no. 6, pp. 717–721, 2010. View at Google Scholar · View at Scopus
  6. D. P. Rai, Sandeep, M. P. Ghimire, and R. K. Thapa, “Structural stabilities, elastic and thermodynamic properties of Scandium Chalcogenides via first-principles calculations,” Bulletin des Sciences Mathématiques, vol. 34, pp. 1219–1222, 2011. View at Google Scholar
  7. D. P. Rai and R. K. Thapa, “Electronic structure and magnetic properties of X2YZ (X = Co, Y = Mn, Z = Ge, Sn) type Heusler compounds by using a first principle study,” Phase Transition: A Multinational Journal, pp. 1–11, 2012. View at Google Scholar
  8. D. P. Rai, Sandeep, M. P. Ghimire, and R. K. Thapa, “Electronic tructure and magnetic properties of Co2YZ (Y = Cr, V = Al, Ga) type Heusler compounds: A first Principle Study,” International Journal of Modern Physics B, vol. 26, pp. 1250071–1250083, 2012. View at Google Scholar
  9. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, “Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators,” Physical Review B, vol. 52, no. 8, pp. R5467–R5470, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. K. W. Lee and W. E. Pickett, “Infinite-layer LaNiO2: Ni1+ is not Cu2+,” Physical Review B, vol. 70, Article ID 165109, 2004. View at Google Scholar
  11. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study,” Physical Review B, vol. 57, no. 3, pp. 1505–1509, 1998. View at Google Scholar · View at Scopus
  12. E. R. Ylvisaker, W. E. Pickett, and K. Koepernik, “Anisotropy and magnetism in the LSDA+U method,” Physical Review B, vol. 79, Article ID 035103, 2009. View at Google Scholar
  13. S. Y. Savrasov, A. Toropova, M. I. Katsnelson, A. I. Lichtenstein, V. Antropovand, and G. Kotliar, “Electronic structure and magnetic properties of solids,” Zeitschrift Für Kristallographie, vol. 220, pp. 473–488, 2005. View at Publisher · View at Google Scholar
  14. J. Hubbard, “Electron correlations in narrow energy bands,” Proceedings of the Royal Society A, vol. 276, pp. 238–257, 1963. View at Publisher · View at Google Scholar
  15. P. W. Anderson, “The resonating valence bond state in La2CuO4 and superconductivity,” Science, vol. 235, no. 4793, pp. 1196–1198, 1987. View at Google Scholar · View at Scopus
  16. F. Heusler, “Über magnetische Manganlegierungen,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 12, p. 219, 1903. View at Google Scholar
  17. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, “An augmented plane wave plus local orbitals program for calculating crystal properties,” Wien2K User's Guide, Technische Universität Wien, Wien, Austria, 2008. View at Google Scholar
  18. L. M. Roth, “New method for linearizing many-body equations of motion in statistical mechanics,” Physical Review Letters, vol. 20, pp. 1431–1434, 1968. View at Google Scholar
  19. J. van den Brink, M. B. J. Meinders, and G. A. Sawatzky, “Influence of screening effects and inter-site Coulomb repulsion on the insulating correlation gap,” Physica B, vol. 206-207, pp. 682–684, 1995. View at Google Scholar · View at Scopus
  20. K. H. G. Madsen and P. Novák, “Charge order in magnetite. An LDA+U study,” Europhysics Letters, vol. 69, p. 777, 2005. View at Google Scholar
  21. I. Galanakis, “Orbital magnetism in the half-metallic Heusler alloys,” Physical Review B, vol. 71, Article ID 012413, 2005. View at Google Scholar
  22. C. Ederer and M. Komelj, “Magnetic coupling in CoCr2O4 and MnCr2O4: an LSDA+U study,” Physical Review B, vol. 76, Article ID 064409, 9 pages, 2007. View at Google Scholar
  23. F. Mancini and F. P. Mancini, “One dimensional extended Hubbard model in the atomic limit,” Cond. Mat. Str-El, vol. 77, pp. 061120–061121, 2008. View at Google Scholar